

Indice

1	Prer	nessa	1
	1.1	Descrizione dei lavori	1
2	Nori	mative di riferimento	2
3	lpot	esi di calcoli generali	3
	3.1	Generale	3
	3.2	Valutazione della sicurezza	3
	3.2.2	1 Verifiche agli stati limite ultimi	4
	3.2.2	2 Verifiche agli stati limite di esercizio	5
	3.2.3	3 Verifica dell'ancoraggio del tirante/chiodo	7
	3.3	Software di calcolo	8
4	Vita	nominale, classi d'uso e periodo di riferimento	9
5	Cara	atterizzazione geotecnica	10
	5.1	Parametri geotecnici	10
6	Azio	ni sulle strutture	11
	6.1	Classificazione delle azioni secondo la variazione della loro intensità nel tempo	11
	6.1.2	1 Carichi permanenti (G)	11
	6.1.2	2 Carichi variabili (Q)	11
	6.1.3	Azioni sismiche (E)	12
	6.2	Combinazioni delle azioni	13
	6.3	Valori dei coefficienti parziali di sicurezza	13
	6.3.2	1 Coefficienti parziali di sicurezza dei materiali	13
	6.4	Valori dei coefficienti di combinazione	14
	6.5	Coefficienti parziali di sicurezza per parametri del terreno	14
	6.6	Fattori di correlazione per pali soggetti a carichi assiali	14
	6.7	Coefficienti parziali per la resistenza di ancoraggi	15
	6.8	Coefficienti parziali verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo	15
7	Anal	lisi dei carichi	16
	7.1	Peso proprio degli elementi strutturali	16
	7.2	Peso proprio degli elementi non strutturali	16
	7.3	Carichi variabili	16
	7.4	Carichi edifici esistenti	17
8	Mat	eriali	20
	8.1	Calcestruzzo	20
	8.1.2	1 Classi di esposizione	20
	8.2	Acciaio per cemento armato	21

	8.3	Acci	ai laminati	21
	8.4	Tira	nti	21
	Acciai	o per	post-tensione	21
	8.5	Barr	re autoperforanti	22
9	Ber	linese	e - Sezione 2-2 lato 1	23
	9.1	Des	crizione	23
	9.2	Мо	dello di calcolo	23
	9.2.	1	Geometria del modello di calcolo	23
	9.3	Veri	fiche	24
	9.3.	1	Stato limite ultimo – Sezioni / Elementi	24
	9.3.	2	Stato limite ultimo – Stabilità globale dell'opera	30
	9.3.	3	Stato limite di esercizio – Spostamenti	31
10) В	erline	ese - Sezione 2-2 e sezione 3c-3c lato 2	33
	10.1	Des	crizione	33
	10.2	Мо	dello di calcolo	33
	10.2	2.1	Geometria del modello di calcolo	33
	10.3	Veri	fiche	34
	10.3	3.1	Stato limite ultimo – Sezioni / Elementi	34
	10.3	3.2	Stato limite ultimo – Stabilità globale dell'opera	39
	10.3	3.3	Stato limite di esercizio – Spostamenti	40
11	. В	erline	ese - Sezione 3a-3a lato 2	42
	11.1	Des	crizione	42
	11.2	Мо	dello di calcolo	42
	11.2	2.1	Geometria del modello di calcolo	42
	11.3	Veri	fiche	43
	11.3	3.1	Stato limite ultimo – Sezioni / Elementi	43
	11.3	3.2	Stato limite ultimo – Stabilità globale dell'opera	47
	11.3	3.3	Stato limite di esercizio – Spostamenti	48
12	2 P	arete	chiodata - Sezione 3a-3a e sezione 3c-3c lato1	50
	12.1	Des	crizione	50
	12.2	Мо	dello di calcolo	50
	12.2	2.1	Geometria del modello di calcolo	50
	12.3	Veri	fiche	51
	12.3	3.1	Stato limite ultimo – Sezioni / Elementi	51
	12.3	3.2	Stato limite ultimo – Stabilità globale dell'opera	53
	12.3	3.3	Stato limite di esercizio – Spostamenti	54
13	. "	Berlir	ner Verbau" Sezione 2-2, 3a-3a e 3c-3c	57

14	Tu	nnel	– Sezione 2-2, 3a-3a, 3c-3c, 4-4	67
14	.1	Desc	crizione	67
14	.2	Mod	lello di calcolo	67
	14.2.	1	Geometria del modello di calcolo	67
15	Ca	nale	– Sezione 2-2, 3a-3a e 3c-3c	72
15	.1	Desc	crizione	72
15	.2	Mod	lello di calcolo	72
	15.2.	1	Geometria del modello di calcolo	72
15	.3	Trav	e in acciaio e predalles	81
16	Ca	nale	– Sezione 5-5	84
16	.1	Desc	crizione	84
16	.2	Mod	lello di calcolo (fase provvisoria)	84
	16.2.	1	Geometria del modello di calcolo	84
16	.3	Mod	lello di calcolo (fase finale)	95
	16.3.	1	Geometria del modello di calcolo	95
17	Ра	li seo	canti – Sezione 6 1	101
17	.1	Desc	rizione 1	101
17	.2	Mod	lello di calcolo1	101
	17.2.	1	Geometria del modello di calcolo 1	101
17	.3	Veri	fiche1	103
	17.3.	1	Stato limite ultimo – Sezioni / Elementi 1	103
	17.3.	2	Stato limite ultimo – Stabilità globale dell'opera 1	107
	17.3.	3	Stato limite di esercizio – Spostamenti 1	109
18	"В	erlin	er Verbau" Sezione 5-5 e 6-6 1	111
19	Se	zione	e 6-6 1	121
19	.1	Desc	rizione 1	121
19	.2	Mod	lello di calcolo1	121
	19.2.	1	Geometria del modello di calcolo 1	121
19	.3	Pilas	stro1	134
19	.4	Fond	dazioni1	142
20	"В	erlin	er Verbau" Sezione 11-11 1	146
21	Ра	rete	chiodata - Sezione 12 1	155
21	.1	Desc	crizione1	155
21	.2	Mod	lello di calcolo 1	155
	21.2.	1	Geometria del modello di calcolo	155
21	.3	Veri	fiche1	156
	21.3.	1	Stato limite ultimo – Sezioni / Elementi 1	156

	21.3	8.2	Stato limite ultimo – Stabilità globale dell'opera	158
	21.3	8.3	Stato limite di esercizio – Spostamenti	159
22	A	llegat	i	162
	22.1	Phi -	- C reduction and comparison with Bishop's method	162

1 Premessa

L'area d'intervento si trova a Bolzano e fa parte del progetto "Piano di riqualificazione urbanistica nella zona Via Perathoner – Alto Adige".

La presente relazione di calcolo è riferita al progetto di variante proposta da Holzner&Bertagnolli per le opere di sostegno provvisorie e permanente e per le opere strutturale della galleria artificiale. Il progetto di variante base sul progetto esecutivo di Ing. Rudi Bertagnolli dal 30.11.2018 e sul progetto di Variante della ditta esecutrice cmb dal 17.02.2020.

La presente relazione deve essere letta congiuntamente agli altri elaborati facenti parte del progetto definitivo.

1.1 Descrizione dei lavori

Nella presente relazione si affronta il calcolo strutturale delle opere di sostegno e del tunnel di via Alto Adige da Piazza Verdi fino all'incrocio con Via Perathoner Piazza Walther (da fase 3 a fase 6):

Sono previsto i seguenti lavori:

- la realizzazione di una berlinese provvisoria costituita da pali trivellati e micropali insieme con un "Berliner Verbau" per la costruzione di un canale, necessario per la posa di varie infrastrutture (fase 3a e 3a')
- la realizzazione di una berlinese provvisoria costituita da micropali contrastati con tiranti e una parete chiodata e successiva costruzione del tunnel in tecnologia tradizionale. (fasi 3 - 4; sezione 2-2; 3a-3a; 3c-3c)
- la realizzazione di una berlinese permanente costituita da pali trivellati e successiva costruzione del tunnel in tecnologia tradizionale. (fasi 6; sezione 6-6)
- la realizzazione di una parete chiodata tra i pali trivellati nella zona dell'edificio vicino (fase 6; sezione 6-6)

Figura 1: Planimetria

2 Normative di riferimento

La progettazione delle opere strutturali è stata svolta nel rispetto del D.M. 17/01/2018 "Norme Tecniche per le Costruzioni", nel seguito richiamata NTC 2018.

Circa le indicazioni applicative per l'ottenimento delle prescritte prestazioni, per quanto non espressamente specificato nella NTC 2018, si è fatto riferimento a normative di comprovata validità e ad altri documenti tecnici (NTC 2018, § 1), in particolare agli Eurocodici con le relative Appendici Nazionali.

La progettazione strutturale è stata elaborata nel pieno rispetto delle seguenti normative nazionali:

- Decreto del Ministero delle Infrastrutture 17 Gennaio 2018 Approvazione delle nuove Norme Tecniche per le Costruzioni (NTC 2018)
- Circolare del Ministero delle Infrastrutture 2 Febbraio 2009, n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 Gennaio 2008 (Circ. NTC 2008)
- D.M. 16 febbraio 2007: Classificazione di resistenza al fuoco di prodotti ed elementi costruttivi di opere da costruzione;

La progettazione strutturale è stata elaborata nel pieno rispetto delle seguenti normative europee:

- UNI EN 1990:2006 Eurocodice 0 Criteri generali di progettazione strutturale;
- UNI EN 1991-1-1:2004 Eurocodice 1 Azioni sulle strutture Parte 1-1: Azioni in generale – Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici;
- UNI EN 1992-1-1:2005 Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1993-1-1:2005 Eurocodice 3 Progettazione delle strutture in acciaio Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1994-1-1:2005 Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1997-1:2005 Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali;
- UNI EN 1998-1:2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici;

La progettazione strutturale è stata elaborata nel pieno rispetto delle seguenti documenti tecnici:

- AICAP 1993: Ancoraggi nei terreni e nelle rocce Raccomandazioni
- AICAP 2012: Ancoraggi nei terreni e nelle rocce Raccomandazioni

3 Ipotesi di calcoli generali

3.1 Generale

Le opere strutturali sono verificate per gli stati limite ultimi che possono presentarsi, in conseguenza alle diverse combinazioni delle azioni e per gli stati limite di esercizio, definiti in relazione alle prestazioni attese.

Inoltre, la struttura è verificata nelle fasi intermedie, tenendo conto del processo costruttivo. Le verifiche per queste situazioni transitorie sono condotte nei confronti degli stati limite ultimi (NTC 2018, § 2.2.3).

Le verifiche di sicurezza dei singoli componenti strutturali sono riportati nel capitolo 10.

3.2 Valutazione della sicurezza

Per la valutazione della sicurezza della struttura si adotta il criterio del metodo semiprobabilistico agli stati limite, basato sull'impiego dei coefficienti parziali di sicurezza, confrontando la resistenza e l'effetto delle azioni.

Quando pertinente, si deve verificare che non vengano superati i seguenti stati limite:

- perdita dell'equilibrio della struttura o del terreno considerato come corpo rigido, in cui la resistenza dei materiali strutturali e del sottosuolo forniscono un contributo trascurabile alla resistenza del sistema (EQU);

- rottura interna o eccesso di deformazione nella struttura o negli elementi strutturali, compresi per esempio plinti, pali o muri contro terra, in cui la resistenza dei materiali strutturali rappresenta un contributo significativo alla resistenza del sistema (STR);

- rottura o eccesso di deformazione nel sottosuolo, in cui la resistenza del terreno o della roccia forniscono un contributo significativo alla resistenza del sistema (GEO);

- perdita di equilibrio della struttura o del sottosuolo per sollevamento dovuto a pressioni idrauliche (galleggiamento) o altre azioni verticali (UPL);

- sollevamento idraulico, erosione interna, e "piping" nel sottosuolo dovuti a gradienti idraulici (HYD).

La verifica della sicurezza nei riguardi degli stati limite ultimi di resistenza si effettua con il "metodo dei coefficienti parziali" di sicurezza espresso dalla equazione formale: $R_d \ge E_d$ dove

- R_d è la resistenza di progetto, valutata in base ai valori di progetto della resistenza dei materiali e ai valori nominali delle grandezze geometriche interessate;
- E_d è il valore di progetto dell'effetto delle azioni, valutato in base ai valori di progetto $F_{dj} = F_{kj} \cdot \gamma_{Fj}$ delle azioni, o direttamente $E_{dj} = E_{kj} \cdot \gamma_{Ej}$.
- I coefficienti parziali di sicurezza, $\gamma_{Mi} e \gamma_{Fj}$, associati rispettivamente al materiale i-esimo e all'azione j-esima, tengono in conto la variabilità delle rispettive grandezze e le incertezze relative alle tolleranze geometriche e alla affidabilità del modello di calcolo.

La verifica della sicurezza nei riguardi degli stati limite di esercizio si esprime controllando aspetti di funzionalità e stato tensionale.

3.2.1 Verifiche agli stati limite ultimi

Nelle verifiche agli stati limite ultimi si distinguono:

- lo stato limite di equilibrio come corpo rigido: EQU
- lo stato limite di resistenza della struttura compresi gli elementi di fondazione: STR
- lo stato limite di resistenza del terreno: GEO

Equazioni alla base del calcolo dell'armatura di flessione

Terminologia per il dimensionamento e la posa delle armature nei solai

In seguito sono riportate le convenzioni sui parametri usati dal software di calcolo Scia Engineer.

Design magnitude

Project: plate	mxD+, myD+, mcD+, mxD–, myD–, mcD–
Project: wall	nxD, nyD, ncD
Project: general (shell)	mxD+, myD+, mcD+, mxD–, myD–, mcD–, nxD, nyD, ncD

Design moments in slabs that are related to the surface with positive element coordinate and are marked with + (plus sign). Dimension moments in slabs that are elated to the surface with negative element coordinate and are marked with – (minus sign). Design forces in a wall are in the middle plane. Corresponding surface of action of design moments in shells is given directly by the sigh of the moment.

Figura 2: Parameters for display of results, Scia Basic Reference Guide

Figura 3: Definizione stratigrafia delle armature

Angolo d'inclinazione della biella di compressione

L'angolo d'inclinazione della biella di compressione è stato assunto come variabile nei calcoli. L'angolo θ tra l'asse del solaio e la biella varia entro i seguenti limiti: $1 \le \cot \theta \le 2,5$.

Nota

I valori di picco presenti nei diagrammi dei momenti flettenti, nei diagrammi dell'andamento delle armature e nei diagrammi degli stati tensionali, dovuti alle singolarità del modello di calcolo, sono stati valutati con valori medi agenti in un intervallo adatto.

3.2.2 Verifiche agli stati limite di esercizio

La tensione di compressione nel calcestruzzo deve essere limitata al fine di evitare fessure longitudinali, micro-fessurazione o elevati livelli di viscosità, laddove questi possano comportare effetti inaccettabili per la funzionalità della struttura.

Possono insorgere fessure longitudinali se il livello di tensione sotto la combinazione di carico caratteristica eccede un valore critico. Perciò é opportuno limitare le tensioni di compressione al valore $k_1 \cdot f_{ck}$ per esposizione in ambienti di classe XD, XF e XS.

Il valore raccomandato é $k_1 = 0,60$.

Se la tensione nel calcestruzzo sotto i carichi quasi permanenti è minore di $k_2 \cdot f_{ck}$, si può assumere un comportamento visco-elastico di tipo lineare. Se la tensione nel calcestruzzo eccede $k_2 \cdot f_{ck}$, si raccomanda di considerare un comportamento visco-elastico di tipo non lineare.

Il valore raccomandato é $k_2 = 0,45$.

Si può ammettere che fessurazioni o spostamenti non accettabili siano evitati quando, sotto la combinazione di carichi caratteristica, la tensione di trazione nell'armatura non eccede $k_3 \cdot f_{yk}$. Se la tensione è dovuta a deformazioni imposte, si raccomanda che la tensione di trazione non ecceda $k_4 \cdot f_{yk}$. Si raccomanda che il valore medio della tensione nell'armatura di precompressione non sia maggiore di $k_5 \cdot f_{pk}$.

2020-021_DEF_GEO_RST_001_C

I valori raccomandati sono k₃ = 0,80 k₄ = 1,00 k₅ = 0,70.

Deformazioni e spostamenti

Le deformazioni massime (inflessioni) di calcolo per gli elementi in CA sono le seguenti:

- $\delta_{max} < L_{eff} / 250$
- $\delta_{incrementale} < L_{eff} / 300$

Deformazioni a lungo termine:

Ritiro e viscosità modificano lo stato deformativo anche in assenza di variazione di carico. Assumendo valida la teoria lineare, la deformazione viscosa ε_v è proporzionale alla deformazione elastica ε_{el} secondo il coefficiente di viscosità ϕ .

 $\epsilon = \epsilon_{el} + \epsilon_v = \epsilon \cdot (1 + \phi) = \sigma_C / E_C \cdot (1 + \phi)$

Pertanto si adotta il modulo elasticità efficace del calcestruzzo $E_{c,eff} = E_{cm} / (1 + \phi \cdot (\infty, t_0))$ (EC2, §7.4.3), impiegato anche per determinare uno dei parametri che rientrano nel calcolo della rigidezza, ovvero il rapporto tra i moduli elastici $\alpha_e = E_s / E_{c,eff}$. Inoltre, sempre per il calcolo dell'inerzia, è stato considerato lo stadio fessurativo della sezione.

Il coefficiente di viscosità e le deformazioni da ritiro sono ricavate mediante le equazioni riportate nell'Appendice B dell'EC2.

3.2.2.1 Stabilità globale dell'insieme opera

Plaxis

Si riporta la verifica di stabilità globale dell'opera. L'analisi è stata condotta con il programma Plaxis 2D.

Se non diversamente specificato nei capitoli successivi, la verifica di stabilità globale del complesso d'opera di sostegno – terreno sarà effettuata secondo:

Approccio 1: Combinazione 2 (A2+M2+R2)

Il programma considera tutti i meccanismi di collasso possibili, come elencato nel §6.5.3 della NTC 2018.

Il fattore di sicurezza sarà calcolato tramite una riduzione dei parametri ø e c così definito:

$$\sum M_{sf} = \frac{\tan \emptyset'_{input}}{\tan \emptyset'_{reduced}} = \frac{c'_{input}}{c'_{reduced}}$$

Nota: Il programma trasforma il modello del terreno in un modello secondo l'approccio "Mohr – Coulomb" considerando lo stato tensionale del terreno della fase di calcolo relativa.

Per ulteriori informazioni si rimanda alla documentazione tecnica presente sul sito: <u>www.plaxis.nl</u> Inoltre si allega un esempio, laddove si verifica la riduzione φ – c con il metodo secondo "Bishop" (vedi allegati).

3.2.3 Verifica dell'ancoraggio del tirante/chiodo

Sia in condizioni statiche, che in condizione sismica, le verifiche sono state condotte rispettando l'equazione $R_d \ge E_d$ dove:

- R_d è la resistenza di progetto, valutata in base ai valori di progetto della resistenza dei materiali e ai valori nominali delle grandezze geometriche interessate;
- $E_d \grave{e} il valore di progetto dell'effetto delle azioni, valutato in base ai valori di progetto <math>F_{dj} = F_{kj} \cdot \gamma_{Fj}$ delle azioni, o direttamente $E_{dj} = E_{kj} \cdot \gamma_{Ej}$.

La resistenza a trazione del bulbo è calcolata come:

$$R_d = \frac{\pi \cdot D \cdot \alpha \cdot L_a \cdot q_s}{\gamma_R}$$

con

- D diametro nominale di perforazione
- α coefficiente amplificativo in funzione delle modalità di iniezione e del tipo di terreno
- La lunghezza del bulbo di ancoraggio
- q_S tensione di calcolo di aderenza fra la malte del bulbo e del terreno $q_S = q_k/\xi_i$ (q_k valore caratteristico, ξ_i coefficiente di correlazione Tab. 6.6.1/6.6.11 NTC2018)
- γ_R coefficiente parziale per la resistenza di ancoraggio
 - γ_R = 1,1 ancoraggi temporanei
 - γ_R = 1,2 ancoraggi permanenti

Si utilizza una tensione di calcolo di aderenza fra malta del bulbo e terreno pari a $q_s = 320 \text{ kN/m}^2$ secondo l'approccio Bustamante e Doix.

Il valore del coefficiente di maggiorazione α si assume pari a 1,35.

3.3 Software di calcolo

Le analisi e le verifiche delle strutture portanti sono svolte con l'ausilio dei seguenti codici di calcolo. L'affidabilità dei codici utilizzati e l'attendibilità dei risultati ottenuti sono state controllate confrontando i risultati con calcoli ausiliari (NTC 2018, § 10.2).

Plaxis 2D	Analisi agli elementi finiti del terreno			
	Versione:	2019		
Plaxis 3D	Analisi agli elen	nenti finiti del terreno		
	Versione:	2018		
Allplan 2018	Software per il	disegno strutturale 2D e 3D		
Microsoft Excel 2010	Software per la	realizzazione di fogli di calcolo automatizzati		
Microsoft Word 2010	Software per l'é	elaborazione di testi		

Metodo di calcolo- Plaxis 2D

La struttura è stata modellata agli elementi finiti con il programma Plaxis 2D. Il programma è in grado di simulare l'interazione terreno - struttura nel modo più realistico. L'analisi è stata effettuata considerando le varie fasi di costruzione, tendendo conto della deformabilità della struttura e delle caratteristiche elastoplastiche del terreno.

Gli elementi strutturali sono dimensionati assumendo un comportamento elastico lineare del materiale, sino al raggiungimento della condizione di snervamento.

La modellazione del terreno avviene tramite l'approccio "Hardening soil model with small – strain stiffness (HSSMALL)" e "Hardening soil (HS)".

Il modello Hardening Soil è un'evoluzione del modello costitutivo di Duncan & Chang (1970), che per primo ha introdotto un legame iperbolico tra deformazione assiale e sforzo deviatorico. Per tenere conto anche del valore di rigidezza del terreno a piccole deformazioni è stato messo a punto il modello HS Small (Benz, 2007), che si differenzia dal modello HS per due motivi: l'impiego dei parametri G₀, modulo di elasticità tangenziale in valore tangente iniziale e $\gamma_{0.7}$, livello di deformazione tangenziale al quale G₀ è ridotto al 70% del valore iniziale, oltre ad una fase di scarico-ricarico non lineare.

Per ulteriori informazioni si rimanda alla documentazione tecnica sul sito: www.plaxis.nl

4 Vita nominale, classi d'uso e periodo di riferimento

In seguito, sono definite la vita nominale, la classe d'uso e, di conseguenza, il periodo di riferimento per le strutture provvisorie

•	Vita nominale dell'opera strutturale	V_N = <2 anni	(NTC 2018, § 2.4.1)
•	Classe d'uso	classe II	(NTC 2018, § 2.4.2)
		C _U = 1,5	
•	Periodo di riferimento	V _R = <2 anni	(NTC 2018, § 2.4.3)

In seguito, sono definite la vita nominale, la classe d'uso e, di conseguenza, il periodo di riferimento per le strutture permanenti

•	Vita nominale dell'opera strutturale	V _N = 100 anni	(NTC 2018, § 2.4.1)
•	Classe d'uso	classe II	(NTC 2018, § 2.4.2)
		C _U = 1,0	
•	Periodo di riferimento	V _R = 100 anni	(NTC 2018, § 2.4.3)

5 Caratterizzazione geotecnica

5.1 Parametri geotecnici

I parametri geotecnici utilizzati si basano sul progetto esecutivo e sulla relazione geologica e geotecnica.

Material set Identification number				
Identification number				
		2	3	4
Identification		Strato 3	Strato1	Strato2
Material model		HS small	HS small	HS small
Drainage type		Drained	Drained	Drained
Colour		RGB 242, 201, 105	RGB 161, 226, 232	RGB 134, 234, 162
Comments				
Conoral properties				
Vuent	kN/m³	18.50	18.00	21.00
Y unsat	kN/m³	19,00	19,00	22,00
' sat				
Stiffness				
E 50 ref	kN/m²	25,00E3	10,00E3	55,00E3
E _{oed} ^{ref}	kN/m²	25,00E3	10,00E3	48,26E3
E _{ur} ref	kN/m²	75,00E3	30,00E3	165,0E3
power (m)		0,5000	0,5000	0,5000
Alternatives				
Use alternatives				
C _c		0,01380	0,03450	7,149E-3
C _s		4,140E-3	0,01035	1,882E-3
e _{init}		0,5000	0,5000	0,5000
Strength				
c _{ref}	kN/m²	2,000	5,000	0,000
φ (phi)	•	28,00	30,00	38,00
ψ (psi)	•	0,000	0,000	0,000
5mall strain				
Y _{0.7}		0,1000E-3	0,1000E-3	0,1000E-3
G ₀ ref	kN/m²	60,00E3	40,00E3	170,0E3

Figura 4: Parametri geotecnici

Per il fronte scavo è stato attribuito un valore per la coesione pari a 5 kN/m².

6 Azioni sulle strutture

6.1 Classificazione delle azioni secondo la variazione della loro intensità nel tempo

6.1.1 Carichi permanenti (G)

Le azioni agiscono durante tutta la vita nominale della costruzione, la cui variazione d'intensità nel tempo è così piccola e lenta da poterle considerare con sufficiente approssimazione, costanti nel tempo:

- Peso proprio di tutti gli elementi strutturali; forze risultanti dalla pressione dell'acqua: G1
 I pesi propri degli elementi strutturali sono determinati in base alle sezioni geometriche e ai pesi
 specifici corrispondenti, riportati nelle NTC 2018, § 3.1.3.1, Tab. 3.1.1.
 Acciaio 78,50 kN/m³
 Calcestruzzo armato 25,00 kN/m³
 Calcestruzzo non armato 24,00 kN/m³
 Calcestruzzo alleggerito per massetti 16,00 kN/m³
- Peso proprio di tutti gli elementi non strutturali: G2
 I carichi permanenti portati derivano dalle densità dei materiali e sono dedotti dalle stratigrafie dei solai e dai pacchetti portati.
- Spostamenti e deformazioni
- Pretensione e precompressione: P
- Ritiro e viscosità
- Spostamenti differenziali

6.1.2 Carichi variabili (Q)

Le azioni variabili sulle strutture o sull'elemento strutturale con valori istantanei possono essere sensibilmente diverse fra loro nel tempo:

- Lunga durata: azioni che agiscono con un'intensità significativa, anche non continuativamente, per un tempo non trascurabile rispetto alla vita nominale della struttura.
- Breve durata: azioni che agiscono per un periodo breve rispetto alla vita nominale della struttura.

I valori dei carichi d'esercizio, per le diverse categorie di edifici, sono riportati nelle NTC 2018, § 3.1.4, Tabella 3.1.II.

6.1.3 Azioni sismiche (E)

Sono le azioni derivanti dai terremoti.

La distribuzione del livello di pericolosità attesa sul territorio nazionale è rappresentata in Figura 5.

Per il comune di Bolzano, e in particolare per il luogo in esame, l'accelerazione massima attesa al suolo, a meno dell'amplificazione stratigrafica, è rappresentata dalla figura seguente.

Figura 5: Zone sismiche 2015 (zonesismiche.mi.ingv.it)

6.2 Combinazioni delle azioni

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale SLU $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \Psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \Psi_{03} \cdot Q_{k3} + ...$
- Combinazione caratteristica (rara) SLE $G_1 + G_2 + P + Q_{k1} + \Psi_{02} \cdot Q_{k2} + \Psi_{03} \cdot Q_{k3} + \dots$
- Combinazione frequente SLE $G_1 + G_2 + P + \Psi_{11} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + \dots$
- Combinazione quasi permanente SLE $G_1 + G_2 + P + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + \dots$
- Combinazione sismica SLU e SLE E + G₁ + G₂ + P + Ψ_{21} ·Q_{k1} + Ψ_{22} ·Q_{k2} + ...
- Combinazione eccezionale SLU $G_1 + G_2 + P + A_d + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + ...$

6.3 Valori dei coefficienti parziali di sicurezza

I valori dei coefficienti parziali di sicurezza γ_{Gi} e γ_{Qi} sono dati dalla NTC 2018, § 2.6.1.

		Coefficiente	EQU	A1	A2	UPL	HYD
		ΥF		STR	GEO		
Carichi nermanenti	Favorevole	γ _{G1}	0,90	1,00	1,00	0,90	0,90
Carlein permanenti	Sfavorevole		1,10	1,30	1,00	1,10	1,30
Carichi permanenti	Favorevole	Y _{G2}	0,00	0,00	0,00	0,00	0,00
non strutturali	Sfavorevole		1,50	1,50	1,30	1,50	1,50
Carichi variabili	Favorevole		0,00	0,00	0,00	0,00	0,00
	Sfavorevole	YQi	1,50	1,50	1,30	1,50	1,50

Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) sono compiutamente definiti si adottano per essi gli stessi coefficienti validi per le azioni permanenti.

6.3.1 Coefficienti parziali di sicurezza dei materiali

I valori dei coefficienti parziali di sic. dei materiali γ_i sono dati dalla NTC 2018, § 4.3.3, §4.2.4.1.1, §4.4.6.

Nelle verifiche agli stati limite ultimi si assume:

-	γ _c (calcestruzzo) =	1,50
-	γ _A (acciaio da carpenteria) =	1,05
-	γ _s (acciaio da armatura) =	1,15
-	γ _v (connessioni) =	1,25
-	γ _{M0} (resistenza delle sezioni) =	1,05
-	γ_{M1} (resistenza all'instabilità delle membrature) =	1,05
-	γ_{M1} (resistenza all'instabilità delle membrature, ponti) =	1,10
-	γ_{M2} (resistenza nei riguardi della frattura delle sezioni tese) =	1,25

Nelle verifiche agli stati limite di esercizio si assume $\gamma_M = 1$. Nelle verifiche in situazioni di progetto eccezionali si assume $\gamma_M = 1$.

Valori dei coefficienti di combinazione 6.4

I valori dei coefficienti di combinazione sono dati dalla NTC 2008, § 2.5.3.

Categoria	Azione variabile	Ψ_{0j}	Ψ_{1j}	Ψ_{2j}
A	Ambienti ad uso residenziale	0,7	0,5	0,3
В	Uffici	0,7	0,5	0,3
С	Ambienti suscettibili di affollamento	0,7	0,7	0,6
D	Ambienti ad uso commerciale	0,7	0,7	0,6
E	Biblioteche, archivi, magazzini e ambienti ad uso	1,0	0,9	0,8
	industriale			
F	Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
G	Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Н	Coperture	0,0	0,0	0,0
	Vento	0,6	0,2	0,0
	Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
	Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
	Variazioni termiche	0,6	0,5	0,0

Coefficienti parziali di sicurezza per parametri del terreno 6.5

Parametro del terreno	simbolo	(M1)	(M2)
	Ύм		
Angolo di resistenza a taglio (o di attrito)	γ _φ ′	1,0	1,25
Coesione efficace	γ _c ′	1,0	1,25
Resistenza (o coesione) non drenate	γ _{cu}	1,0	1,4
Peso dell' unitá di volume	γ _γ	1,0	1,0

Figura 6: Tabella 6.2.II – Coefficienti parziali di sicurezza per parametri del terreno

Fattori di correlazione per pali soggetti a carichi assiali 6.6

I fattori di correlazione per pali soggetti a carichi assiali sono definiti secondo NTC 2008, § 6.4.3.1.1:

Numero di prove di carico	1	2	3	4	≥5
ξ_1	1,40	1,30	1,20	1,10	1,00
ξ_2	1,40	1,20	1,05	1,00	1,00

Figura 7: Tabella 6.4.III– Fattori di correlazione per la determinazione della resistenza caratteristica a partire dai risultati di prove di carico statico su pali pilota

Numero di verticali indagate	1	2	3	4	5	7	≥10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Figura 8:

Tabella 6.4.IV – Fattori di correlazione x per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	≥2	≥5	≥10	≥15	≥20
ξ_5	1,60	1,50	1,45	1,42	1,40
ξ6	1,50	1,35	1,30	1,25	1,25

Figura 9:

Tabella 6.4.V – Fattori di correlazione x per la determinazione della resistenza caratteristica a partire dai risultati di prove dinamiche su pali pilota.

6.7 Coefficienti parziali per la resistenza di ancoraggi

Resistenza	Simbolo	Coefficiente parziale
Temporanei	$\gamma_{Ra,t}$	1,1
Permanenti	γ _{Ra,p}	1,2

 Figura 10:
 Tabelle 6.6.I – Coefficienti parziali per la resistenza di ancoraggi

6.8 Coefficienti parziali verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

Coefficiente	R2
γ_{R}	1,1

Figura 11: Tabelle 6.8.1 – Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

7 Analisi dei carichi

7.1 Peso proprio degli elementi strutturali

Il peso proprio di tutti gli elementi strutturali è valutato in base al peso di unità di volume dei principali materiali strutturali (vedasi NTC 2008, § 3.1.2).

Calcestruzzo armato (e/o precompresso): γ = 25,00 kN/m³

Acciaio: γ = 78,50 kN/m³

Spinta del terreno: La spinta del terreno è un'azione permanente che si comporta però in modo diverso in funzione della deformazione dell'opera di sostegno. Per il peso specifico del terreno γ si rimanda alla relazione geotecnica nel capitolo delle ipotesi geotecniche.

7.2 Peso proprio degli elementi non strutturali

I carichi permanenti portati derivano dalle densità dei materiali e sono dedotti dalle stratigrafie dei solai e dai pacchetti portati.

Terreno di riporto sulla struttura portante: γ = 18,00 kN/m³

7.3 Carichi variabili neve:	1,30 kN/m²
carichi mobili dovuto al traffico:	
marciapiede	5,00 kN/m²
traffico del cantiere	20,00 kN/m²
carico distribuito	20,00 kN/m²

(Per il progetto definitivo non è stato considerato il carico in movimento diviso in 3 corsie. Per questo motivo è stato aumentato il carico distribuito. Il risultato è stato verificato utilizzando un calcolo comparativo.)

7.4 Carichi edifici esistenti

Per i carichi agenti in fondazione degli edifici esistenti è stato preso i carichi della relazione di calcolo del progetto esecutivo di Ing. Rudi Bertagnolli.

Figura 12: Carichi edifici esistenti (Ing. Rudi Bertagnolli)

+ 1 KG)		te	tto + 1 interra	ato)
LASTANNAHME				
ANALISI DEI CARICHI				
	H Geschoss =	3,50	m	
Eigengewicht Decke	g1 =	5,00	kN/m²	
Ständige Lasten auf Decke	g2 =	2,00	kN/m ²	
Eigengewicht Aussenmauer	e3 =	11.20	kN/m	
Eigengewicht Dach	q1 =	2,00	kN/m²	
Nutzlast Decke	q1 =	2,00	kN/m ²	
Schnee	q2 =	1,60	kN/m²	
	n° Geschosse =	6		
	Spannweite Decke =	6.00	m	
	Breite Streifenfunda-			
	ment =	1,50	m	
	g =	132,80	kN/m²	
	q =	27,20	kN/m²	
Aufgerundet / arrotondato	g =	140,00	kN/m²	
Aufgerundet / arrotondato	q =	30,00	kN/m²	
LASTEN IM FUNDAM CARICHI IN FONDAZI	ENT - INNEN ONE PARETE INTERNA			
	reite Streifenfundament =	1,50	m	
В				
В	g =	176,00	kN/m²	

Carichi edificio 3 (Ing. Rudi Bertagnolli)

Gebäude 4 (8 Ge KG)	-undament fur schosse + 1	E.4	per edificio 4 (rato)	8 piani + 1 inte
LASTANNAHME				
ANALISI DEI CARICHI				
	H Geschoss =	3,50	m	
Eigengewicht Decke	g1 =	5,00	kN/m²	
Ständige Lasten auf Decke	g2 =	2,00	kN/m²	
Eigengewicht Aussenmauer	g3 =	11,20	kN/m	
Nutzlast Decke	q1 =	2,00	kN/m²	
Schnee	q2 =	1,60	kN/m²	
	n° Geschosse =	9		
	Spannweite Decke =	6,00	m	
LASTEN IM FUNDAM	ENT - RAND			7
CARICHI IN FONDAZI	ONE PARETE PERIMETRA	LE		
	Breite Streifenfunda-			
	ment =	1,50	m	
	g =	183,60	kN/m²	
	q =	35,20	kN/m²	
Aufgerundet / arrotondato	g =	200,00	kN/m²	
Aufgerundet / arrotondato	q =	35,00	kN/m ²	

carico piano interrato davanti all'edificio 4:

 $g1 + g2 = 18 \text{ kN/m}^2$

 $q = 5 \text{ kN/m}^2$

sez 3a: I = 8,5m -> F = 100 kN/m

sez 3c: l = 4,0m -> F = 50 kN/m

8 Materiali

Le caratteristiche principali dei materiali, usati per la realizzazione delle strutture portanti, sono riportate nei seguenti paragrafi.

8.1 Calcestruzzo

Classe di calcestruzzo		C25/30	C30/37	C35/45	
Resistenza caratteristica cilindrica	f _{ck}	25	30	35	N/mm²
Resistenza caratteristica cubica	f _{ck,cube,} R _{ck}	30	37	45	N/mm²
Resistenza a compressione di progetto	f _{cd}	14	17	20	N/mm²
Resistenza media a compressione	\mathbf{f}_{cm}	33	38	43	N/mm²
Resistenza media a trazione assiale	f _{ctm}	2,6	2,9	3,2	N/mm²
Valore caratteristico della resistenza a trazione assiale	f _{ctk,0,05}	1,8	2,0	2,2	N/mm²
Valore caratteristico della resistenza a trazione assiale	f _{ctk,0,95}	3,3	3,8	4,2	N/mm²
Modulo di elasticità secante del calcestruzzo	E _{cm}	31000	33000	34000	N/mm²
Deformazione di contrazione nel cls	ε _{c1}	2,1	2,2	2,25	‰
Deformazione ultima di contrazione nel cls	ε _{cu1}	3,5	3,5	3,5	‰
	ε _{c2}	2,0	2,0	2,0	‰
	ε _{cu2}	3,5	3,5	3,5	‰
	n	2,0	2,0	2,0	
	ε _{c3}	1,75	1,75	1,75	‰
	ε _{cu3}	3,5	3,5	3,5	‰

8.1.1 Classi di esposizione

Le classi di esposizione sono date dalla UNI 1992-1-1, § 4.2.

5) Attacco di cicli gelo/disgelo						
XF3	Elevata saturazione d'acqua, senza antigelo					
XF4	Elevata saturazione d'acqua, con antigelo oppure acqua di mare					

8.2 Acciaio per cemento armato

L'acciaio per cemento armato B450C è caratterizzato dai seguenti valori nominali delle tensioni caratteristiche di snervamento e rottura:

		B450C
Tensione caratteristica di snervamento	f _{yk}	≥ 450 N/mm²
Resistenza di progetto di snervamento	f _{yd}	391 N/mm²
Tensione caratteristica di rottura	f _{tk}	≥ 540 N/mm²
Modulo elastico	E	210000 N/mm²

8.3 Acciai laminati

L'acciaio deve essere saldabile e qualificato. Si assume per tutte le classi di resistenza i seguenti valori nominali delle proprietà del materiale:

 Modulo elastico 			E = 210.000 N/m	m²
- Coefficiente di Po	oisson		v = 0,15	
- Coefficiente di es	spansione termi	ca lineare	α = 12 x 10 ⁻⁶ per	°C ⁻¹
			(per temperatur	e fino a 100°C)
Norme e qualità	S	pessore nomir	nale dell'elemento	D
degli acciai	t ≤ 40) mm	40 mm < 1	t ≤ 80 mm
	f _{yk} [N/mm²]	f _{tk} [N/mm²]	f _{yk} [N/mm²]	f _{tk} [N/mm²]
UNI EN 10025-2				
S 235	235	360	215	360
S 275	275	430	255	410
S 355	355	510	335	470
S 450	440	550	420	550
		-		

Figura 15: Laminati a caldo con profili a sezione aperta (NTC 2018, Tabella 4.2.I)

8.4 Tiranti

Si utilizza tiranti provvisori con tre e quattro trefoli.

Acciaio per post-tensione

Materiale

f _{p0,1k}	1670 N/mm²
f _{ptk}	1860 N/mm²
E	196.000 N/mm²

Caratteristiche dei trefoli

Descrizione	Trefolo tipo	Diametro nominale	Area nominale	f _{ptk}	f _{p(1)k}	Massa	Tensione 1% di allungamento	Carico di rottura (P _{tk})	Rilassa dopo 0,7 –	mento 1000h 0,8 f _{pt}
		[mm]	[mm²]	[N/mm²]	[N/mm²]	[g/m]	[kN]	[kN]	[%]	[%]
T15	super	15,7	150	1860	1670	1172	246	279	2,5	4,5

E_{cm} = 196.000N/mm² ±10.000N

8.5 Barre autoperforanti

Si utilizzano barre autoperforanti con le seguenti caratteristiche:

Ankertyp	Einheit	R32
diametro esterno	[mm]	32
carico rottura	[kN]	280
Carico si	[LN]	240
snervamento	נגואן	240
peso	[kg/lfm]	3,4

Figura 16: barre autoperforanti

Berlinese - Sezione 2-2 lato 1 9

Descrizione 9.1

Questa è costituita da una parete chiodata e da micropali verticali e inclinati con diametro pari a 168,3 mm. La parete chiodata è costituita da due ordini di chiodi autoperforanti con un interrasse orizzontale di 1,50 m. L'inclinazione dei pali inclinati è pari a 25°. Lo spessore delle sezioni tubolari è 8,8 (v) e 6,3 (i) mm in acciaio S 355. Il contrasto per la paratia, oltre che con i succitati pali inclinati, è realizzato con l'ausilio di tiranti, i quali sono disposti su due ordini. Questi vengono realizzati con interasse tipico pari a 2,8 m ed inclinazione di 10° rispetto ad un piano orizzontale. I micropali come anche i tiranti sono collegati con una trave di ripartizione. La trave di coronamento sarà eseguita in c.a.

Sugli elaborati allegati sono riportati i parametri succitati.

Modello di calcolo 9.2

9.2.1 Geometria del modello di calcolo

Di seguito è riportato il modello computazionale della sezione più sfavorevole.

Geometria del modello di calcolo

Per la modellazione del terreno si utilizza l'approccio HSS. I tiranti sono modellati come "node to node anchor", il bulboe i chiodi come "embedded beam row" e i micropali e lo spritzbeton con elementi "plate".

Parametri di calcolo dei tiranti-bulbo (embedded beam row):

diametro: 0,16 m 25.000 N/mm² (per semplicità si considera solo il modulo elastico della miscela modulo elastico E: cementizia)

Parametri di calcolo dei chiodi autoperforanti (embedded beam row):

diametro:0,08 mmodulo elastico E:25.000 N/mm² (per semplicità si considera solo il modulo elastico della miscelacementizia)

9.3 Verifiche

Si procede ora con le verifiche a stato limite ultimo, delle sezioni e di stabilità globale, e a stato limite di esercizio.

9.3.1 Stato limite ultimo – Sezioni / Elementi

Le sollecitazioni agenti sul sistema sono riportate nella tabella seguente, i valori sono caratteristici, non fattorizzati.

9.3.1.1 Verifica micropalo verticale

Figura 18: Palo verticale: Inviluppo degli sforzi normali, della forza al taglio e dal momento flettente max.

Sollecitazi	oni caratter	istiche palc	verticale	SLE	SLU
Sollecit	tazione	Interasse	~	Sollecitazione / palo	Sollecitazione / palo
[U/	/m]	[m]	ŶΕ	[U/m]	[U/m]
N	-310	0,7	1,35	-217,0	-293,0
Q	80	0,7	1,35	56,0	75,6
М	22	0,7	1,35	15,4	20,8

Micropalo verticale 168,3x8,8 S355

Bending and shear check: RO168.3X8.8 UNI EN 1993-1-1

Input values:

Bending moment	
Shear force	
Steel material	

 $M_{Ed} = 21 \text{ kNm}$ $V_{Ed} = 79 \text{ kN}$ S 355

Cross section parameters:

Cross section areaA = 4410 mm²Shear area $A_{vz} = 2807 mm²$ Cross section bending class1Cross section modulus y axis

 $W_{el,y} = 167000 \text{ mm}^3$ $W_{pl,y} = 223874 \text{ mm}^3$

Cross section modulus z axis

$$W_{el,z} = 167000 \text{ mm}^3$$

 $W_{pl,z} = 223874 \text{ mm}^3$

The greatest thickness of the cross section $t_{max} = 8.8 \text{ mm}$

Design plastic shear resistance $V_{pl,Rd} = \frac{A_{vz} \cdot f_y}{\gamma_{M0} \cdot \sqrt{3}} = \frac{2807 \cdot 355}{1.05 \cdot \sqrt{3}} = 548 \text{ kN}$

Design moment resistance reduced due to the shear, $V_{Ed} < 1/2V_{pl,Rd}$

$$V_{Ed}$$
 = 79 kN < $\frac{1}{2}$ $V_{pl,Rd}$ = 274 kN => Shear effect can be neglected

Design bending resistance

$$M_{Rd,y} = \frac{W_{pl,y} \cdot f_y}{V_{M0}} = \frac{224 \cdot 10^{-6} \cdot 355 \cdot 10^{6}}{1.05} = 75.7 \text{ kNm}$$

Check

Cross section unity check $s = \frac{M_{Ed}}{M_{Rd,y}} = \frac{21 \text{ kNm}}{75.7 \text{ kNm}} = 0.277 < 1 => Is SUFFICIENT$

<u>Check of steel profile on simple compression: RO168.3X8.8</u> <u>UNI EN 1993-1-1</u>

Loading:

Axial force

 $N_{Ed} = 300 \text{ kN}$

Cross section parameters:

	Cross section area	$A = 4410 \text{ mm}^2$	
d = 0.168	Cross section class	1	
	Steel material	S 355	
	The greatest thickness	s of the cross section	t _{max} = 8.8 mm

Bearing capacity calculation:

 $N_{c,Rd} = \frac{A \cdot f_y}{\gamma_{M0}} = \frac{4.41 \cdot 10^{-3} \cdot 355 \cdot 10^6}{1.05} = 1491 \text{ kN}$ Compression bearing capacity

Check:

 $s = \frac{N_{Ed}}{N_{c,Rd}} = \frac{300 \text{ kN}}{1491 \text{ kN}} = 0.201 < 1$ => Is SUFFICIENT

Bending + compression: 0,27+0,20 = 0,47 < 1 => Is SUFFICIENT

9.3.1.2 Verifica micropalo inclinato

Figura 19: Inviluppo degli sforzi normali max.

Micropalo inclinato 168,3x6,3 S355

Sollecitazio	oni caratter	istiche palo	inclinato	SLE	SLU
Sollecit	tazione	Interasse	<u>~</u>	Sollecitazione / palo	Sollecitazione / palo
[U/	'm]	[m]	ŶΕ	[U/m]	[U/m]
N	105	2,8	1,35	294,0	396,9

<u>Check of steel profile for simple tension: RO168.3X6.3</u> <u>UNI EN 1993-1-1</u>

<u>Loading:</u>

Design axial force

 $N_{Ed} = 400 \text{ kN}$

Cross section parameters:

Cross section areaA = 3210 mm^2 Steel materialS 355The greatest thickness of the cross section $t_{max} = 6.3 \text{ mm}$

Tension bearing capacity

Non-weakened bearing capacity

$$\begin{split} N_{pl,Rd} = & \frac{A \cdot f_{\gamma}}{\gamma_{M0}} = \frac{3210 \cdot 355}{1.05} = 1085 \text{ kN} \\ N_{t,Rd} = & N_{pl,Rd} = 1085 \text{ kN} \end{split}$$

<u>Check</u>

 $s = \frac{N_{Ed}}{N_{t,Rd}} = \frac{400 \text{ kN}}{1085 \text{ kN}} = 0.369 < 1$ => Is SUFFICIENT

9.3.1.3 Verifica chiodi + tiranti

Figura 20: Inviluppo degli sforzi normali chiodi

Etructural element	A Node	Local number	x 🔺	Y 🔺	N 🔺	N _{min} 🔺	N _{max} 🔺
Structural element	Node	Local number	[m]	[m]	[kN]	[kN]	[kN]
NodeToNodeAnchor_2_1	7030	1	2,880	-6,800	409,348	0,000	409,348
Element 1-1 (Node-to-node anchor)	13308	2	-2,916	-8,353	409,348	0,000	409,348
NodeToNodeAnchor_1_1	5947	1	2,880	-9,400	378,878	0,000	378,878
Element 2-2 (Node-to-node anchor)	13313	2	-2,916	-10,953	378,878	0,000	378,878

Figura 21: Inviluppo degli sforzi normali tiranti

Coefficient	i parziali - NTC2018 §6.	6 - tiranti d'ancora	aggio					
Tingles'	al time at r	T	Kunne (ter t		Aniani determite t	da yan di U	a alassia	No (Nois
Tipologia de	ei tirante el terreno	Temporaneo/	kurzzeitanker utente/ Benutza	▼ ardefinier ▼	Azioni determinate consi	derando l'azion	e sismica	No/Nein 🔻
Numero pro	ofili d'indagine Tab. 6.6	.III ≥ 5	utente/ benutze	▼	Coefficiente considerato	nel calcolo dell	a resistenza	ξa4 ▼
		Appr. 2 - Co	mb. 1 (GEO)		Appr. 1 - Comb. 1 (STR)		Combinazior	ne sismica
		A1+N	И1+R1		A1+M1+R3			
Coefficient	e per le azioni	Ϋ́E	1,35		γ _E 1,35		Ŷε	1,00
Coefficient	e di progetto	Ϋ́Ra	1,10	Tab 6.6.I	γ _R 1,10		Ŷĸ	1,00
Coefficient	i facenti riferimento ag	li ancoraggi	*	۹.	Coefficienti facenti riferi	mento ai tiranti		
Coefficient	e di maggiorazione	αs		a)	Tasso di lavoro ammesso		α _R	1,00
Valore defi	nito dall'utente		1,35				γs	1,15
a) valori secon	do tabelle Bustamante - Doix	Ostermayer						
Fattore di c	orrelazione in funzion	di prove di prog	etto Tab 66	п	Fattore di correlazione in	funzione dalle	indagini geot	ecniche Tab 66III
i attore ure				1		Tunzione uune	ξ	1.60
		ξ _{a2}					ξ _{a4}	1.55
Fattore di c	orrelazione	1		3				
Valore defi	nito dall'utente	ξ _{u/b}						
		k						
Carichi age	nti							
o 11 - 11 - 1								
Sollecitazio	ne caratteristica agent	e		050 05-	1			
	10	Valore per	combinazion	e GEO e STR	4			
	1º ordine	P _{k,1}	145,0	kN/m	-			
	2º ordino	P _{k,2}	145,0	KN/M	**			
	Jº ordine	P _{k,3}	20.0	KIN/III				
	4- oranie	P _{k,4}	50,0	KIN/III				
Dati geome	trici e meccanici							
0								
		Tir	rante		1	Bulbo d'a	ancoraggio	Attrito laterale
	Inter	Tir asse Nr. trefoli	rante Area trefoli	f _{p(1)k}	Lungh.tot.	Bulbo d'a Lunghezza	ncoraggio Diametro	Attrito laterale Qs
	Inter [n	Tin asse Nr. trefoli] [n]	rante Area trefoli [mm²]	f _{p(1)k} [N/mm ²]	Lungh.tot. [m]	Bulbo d'a Lunghezza [m]	ancoraggio Diametro [m]	Attrito laterale Qs [kN/m²]
	Inter [n 1º ordine 2,	Tir asse Nr. trefoli] [n] 8 3,0	rante Area trefoli [mm ²] 150,0	f _{p(1)k} [N/mm²] 1670,0	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0	Diametro [m] 0,16	Attrito laterale Qs [kN/m ²] 320,0
	Inter [n 1º ordine 2, 2º ordine 2,	Tir asse Nr. trefoli] [n] 8 3,0 8 3,0	rante Area trefoli [mm²] 150,0 150,0	f _{p(1)k} [N/mm ²] 1670,0 1670,0	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0	Diametro [m] 0,16 0,16	Attrito laterale Qs [kN/m ²] 320,0 320,0
	Inter [n 1º ordine 2, 2º ordine 2, chiodo 1,	Tit asse Nr. trefoli [n] [n] 8 3,0 8 3,0 5 1,0	rante Area trefoli [mm²] 150,0 150,0 430,0	f _{p(1)k} [N/mm ²] 1670,0 1670,0 510,0	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3	Diametro [m] 0,16 0,08	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0
	1º ordine 2, 2º ordine 2, chiodo 1,	Til asse Nr. trefoli [n] [n] 8 3,0 8 3,0 5 1,0	rante Area trefoli [mm ²] 150,0 150,0 430,0	f _{p(1)k} [N/mm ²] 1670,0 1670,0 510,0	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3	ncoraggio Diametro [m] 0,16 0,08	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0
Carico limit	Inter [m 1º ordine 2, 2º ordine 2, chiodo 1,	Til asse Nr. trefoli [n] [n] 8 3,0 5 1,0	rante Area trefoli [mm ²] 150,0 150,0 430,0	f _{p(1)k} [N/mm ²] 1670,0 1670,0 510,0	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3	Diametro [m] 0,16 0,08	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0
Carico limit	Inter 1º ordine 2º ordine 2º, chiodo 1,	Til asse Nr. trefoli [n] [n] 8 3,0 5 1,0	rante Area trefoli [mm ²] 150,0 150,0 430,0	f _{p(1)k} [N/mm ²] 1670,0 1670,0 510,0	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3	Diametro [m] 0,16 0,16 0,08	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0
Carico limit	Inter 1º ordine 2º ordine 2, chiodo 1,	Tin asse Nr. trefoli [n] [n] 8 3,0 5 1,0	rante Area trefoli [mm ²] 150,0 150,0 430,0	f _{p(1)k} [N/mm ²] 1670,0 1670,0 510,0	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3	Diametro [m] 0,16 0,16 0,08	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0
Carico limit Carico agen	1º ordine 2, 2º ordine 2, chiodo 1, re di progetto	Tin asse Nr. trefoli [n] [n] 8 3,0 5 1,0	Area trefoli [mm ²] 150,0 150,0 430,0	f _{p(1)k} [N/mm ²] 1670,0 1670,0 510,0	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3	Ancoraggio Diametro [m] 0,16 0,16 0,08	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0
Carico limit Carico agen	1º ordine 2, 2º ordine 2, chiodo 1, re di progetto 10 te di progetto: 10 1º ordine 10	Tin asse Nr. trefoli [n] [n] 8 3,0 8 3,0 5 1,0	Area trefoli [mm ²] 150,0 150,0 430,0 Appr. 1 - Cc 548.1	f _{p(1)k} [N/mm ²] 1670,0 510,0 510,0	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3	Ancoraggio Diametro [m] 0,16 0,16 0,08 Appr. 2 - C 548.1	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0
Carico limit Carico agen	1º ordine 2, 2º ordine 2, chiodo 1, re di progetto 2 te di progetto: 1º ordine 2º ordine 2º ordine	Tiu asse Nr. trefoli [n] 8 3,0 3,0 5 1,0 P _{d,1} P _{d,2}	Area trefoli [mm ²] 150,0 150,0 430,0 Appr. 1 - Co 548,1 548,1	f _{p(1)k} [N/mm ²] 1670,0 510,0 510,0	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3 P _{d,1} P _{d,2}	Appr. 2 - C 548,1 548,1	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0
Carico limit Carico agen	1º ordine 2, 2º ordine 2, chiodo 1, re di progetto 1, te di progetto: 1º ordine 1º ordine 2º ordine chiodo 1,	Tin asse Nr. trefoli [n] [n] 8 3,0 5 1,0 P _{d,1} P _{d,2} P _{d,4}	Area trefoli [mm ²] 150,0 150,0 430,0 Appr. 1 - Cc 548,1 548,1 60,8	f _{p(1)k} [N/mm ²] 1670,0 510,0 510,0 bmb. 1 (STR) kN kN kN	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3 P _{d,1} P _{d,2} P _{d,4}	Ancoraggio Diametro [m] 0,16 0,16 0,08 Appr. 2 - C 548,1 548,1 60,8	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0
Carico limit Carico agen	1º ordine 2, 2º ordine 2, 2º ordine 2, chiodo 1, re di progetto 1, te di progetto: 1º ordine 1º ordine 2º ordine 2º ordine 2º ordine chiodo 1.	Tin asse Nr. trefoli [n] 8 3,0 3,0 5 1,0	Area trefoli [mm ²] 150,0 150,0 430,0 Appr. 1 - Cc 548,1 548,1 60,8	f _{p(1)k} [N/mm ²] 1670,0 510,0 510,0 bmb. 1 (STR) kN kN kN	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 3,3 P _{d,1} P _{d,2} P _{d,4}	Appr. 2 - C 548,1 60,8	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0
Carico limit Carico agen	1º ordine 2, 2º ordine 2, 2º ordine 2, chiodo 1, re di progetto 1, te di progetto 1, te di progetto 1, chiodo 1, chiodo 1, chiodo 1, chiodo 1, chiodo 1,	Tin asse Nr. trefoli [n] [n] 8 3,0 5 1,0 P _{d,1} P _{d,2} P _{d,4}	Area trefoli [mm ²] 150,0 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8	f _{p(1)k} [N/mm ²] 1670,0 510,0 510,0 bmb. 1 (STR) kN kN kN	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 3,3 P _{d,1} P _{d,2} P _{d,4}	Appr. 2 - C 548,1 60,8	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0
Carico limit Carico agen	1º ordine 2, 2º ordine 2, 2º ordine 2, chiodo 1, e di progetto 1, te di progetto: 1, 1º ordine 2, 2º ordine 1, chiodo 1,	Tin asse Nr. trefoli [n] [n] 8 3,0 5 1,0	Area trefoli [mm ²] 150,0 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8	f _{p(1)k} [N/mm ²] 1670,0 510,0 510,0 bmb. 1 (STR) kN kN kN	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3 P _{d,1} P _{d,2} P _{d,4}	Appr. 2 - C 548,1 60,8	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0
Carico limit Carico agen Resistenza	Inter Inter I ¹ ordine 2, 2 ² ordine 2, chiodo 1, di progetto I ² ordine 2 ⁹ ordine 2 ⁹ ordine Chiodo di progetto in condizio	Tin asse Nr. trefoli [n] [n] 8 3,0 5 1,0	Area trefoli [mm ²] 150,0 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8	f _{p(1)k} [N/mm ²] 1670,0 510,0 510,0 510,0 bmb. 1 (STR) kN kN kN	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 3,3 P _{d,1} P _{d,2} P _{d,4}	Appr. 2 - C 548,1 60,8	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0 kN kN kN kN
Carico limit Carico agen Resistenza	Inter Inter I ¹ ordine 2, 2 ² ordine 2, chiodo 1, re di progetto te di progetto: I ² ordine 2 ² ordine Chiodo di progetto in condizio	Tin asse Nr. trefoli [n] [n] 8 3,0 5 1,0	Area trefoli [mm ²] 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8	f _{p(1)k} [N/mm ²] 1670,0 1670,0 510,0 510,0	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3	Appr. 2 - C 548,1 60,8	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0 kN kN kN kN
Carico limit Carico agen Resistenza	Inter Inter I ¹ ordine 2, 2 ² ordine 2, chiodo 1, e di progetto te di progetto: I ² ordine 2 ² ordine 2 ² ordine di progetto in condizio	Tin asse Nr. trefoli [n] [n] 8 3,0 5 1,0	ante Area trefoli [mm ²] 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8 di progetto t	f _{p(1)k} [N/mm ²] 1670,0 1670,0 510,0 510,0 0 kN kN kN kN kN	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3 P _{d,1} P _{d,2} P _{d,4}	Appr. 2 - C 548,1 60,8 amento bulbo	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0 kN kN kN kN kN
Carico limit Carico agen Resistenza	Inter Inte	Tin asse Nr. trefoli [n] 8 3,0 3,0 5 1,0	ante Area trefoli [mm ²] 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8 di progetto t	f _{p(1)k} [N/mm ²] 1670,0 510,0 510,0 bmb. 1 (STR) kN kN kN kN	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3 P _{d,1} P _{d,2} P _{d,4}	Appr. 2 - C 548,1 60,8 amento bulbc (GEO)	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0 kN kN kN kN kN
Carico limit Carico agen Resistenza	Inter I	Tin asse Nr. trefoli [n] 8 3,0 3,0 5 1,0 - - - P _{d,1} P _{d,2} P _{d,4} ne SLU Resistenza Resistenza	ante Area trefoli [mm ²] 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8 di progetto t 653,48	f _{p(1)k} [N/mm ²] 1670,0 510,0 510,0 510,0 kN kN kN kN kN kN kN	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3 P _{d,1} P _{d,2} P _{d,4} Resist. a sfil Rad,1	Appr. 2 - C 548,1 60,8 amento bulbo (GEO)	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0 kN kN kN kN kN kN kN
Carico limit Carico agen Resistenza	1º ordine 2, 2º ordine 2, 2º ordine 2, chiodo 1, re di progetto 1, te di progetto 1, te di progetto 1, di progetto 1, di progetto in condizio 1, 1º ordine 2º ordine chiodo 1, 1º ordine 2, chiodo 1, 1º ordine 2, ordine 2, chiodo 1,	Tin asse Nr. trefoli [n] 8 3,0 3,0 5 1,0 5 1,0 Pd,1 Pd,2 Pd,2 Pd,4 Pd,4 Resistenza Rtd,1 Rtd,2 Resistenza Rtd,2 P P	ante Area trefoli [mm ²] 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8 di progetto t 653,48 653,48	f _{p(1)k} [N/mm ²] 1670,0 510,0 510,0 kN kN kN kN kN kN kN kN kN	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 3,3 P _{d,1} P _{d,2} P _{d,4} Resist. a sfil R _{ad,1} R _{ad,2} P	Appr. 2 - C 548,1 60,8 amento bulbc (GEO) 636,79	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0 kN kN kN kN kN kN kN kN kN
Carico limit Carico agen Resistenza	1º ordine 2, 2º ordine 2, 2º ordine 2, chiodo 1, re di progetto 1, te di progetto 1, te di progetto 1, te di progetto 1, di progetto in condizio 1, di progetto in condizio 1, 1º ordine 2, chiodo 1, di progetto in condizio 1, chiodo 1,	Tin asse Nr. trefoli [n] 8 3,0 3,0 5 1,0 5 1,0 Pd,1 Pd,2 Pd,2 Pd,4 ne SLU Resistenza R _{td,1} R _{td,2} R _{td,1} R _{td,2}	ante Area trefoli [mm ²] 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8 di progetto t 653,48 653,48 190,70	f _{p(1)k} [N/mm ²] 1670,0 510,0 510,0 510,0 kN kN kN kN kN kN kN kN kN kN	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 3,3 P _{d,1} P _{d,2} P _{d,4} Resist. a sfil R _{ad,1} R _{ad,2} R _{ad,4}	Appr. 2 - C 548,1 548,1 60,8 amento bulbo (GEO) 636,79 65,67	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0 kN kN kN kN kN kN kN kN kN kN kN kN kN
Carico limit Carico agen Resistenza	1º ordine 2, 2º ordine 2, 2º ordine 2, chiodo 1, re di progetto 1, te di progetto 1, te di progetto 1, te di progetto 1, di progetto in condizio 1, 1º ordine 2º ordine chiodo 1, 1º ordine 2, chiodo 1, 1º ordine 2, chiodo 1, 1º ordine 1, chiodo 1,	Tin asse Nr. trefoli [n] 8 3,0 3,0 5 1,0	ante Area trefoli [mm ²] 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8 di progetto t 653,48 190,70	f _{p(1)k} [N/mm ²] 1670,0 510,	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 3,3 Pd,1 Pd,2 Pd,4 Resist. a sfil Rad,1 Rad,2 Rad,4	Appr. 2 - C 548,1 548,1 60,8 amento bulbo (GEO) 636,79 65,67	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0 kN kN kN kN kN kN kN kN kN kN kN kN
Carico limit Carico agen Resistenza Verifiche di	1º ordine 2, 2º ordine 2, 2º ordine 2, chiodo 1, re di progetto 1, te di progetto 1, te di progetto 1, te di progetto 1, di progetto in condizio 1, di progetto in condizio 1, 1º ordine 2, 2º ordine 1, chiodo 1, isicurezza agli SLU svoi 1,	Tin asse Nr. trefoli [n] 8 3,0 3 8 3,0 5 1,0	ante Area trefoli [mm ²] 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8 di progetto t 653,48 190,70 el paragrafo 6	f _{p(1)k} [N/mm ²] 1670,0 510,	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 3,3 Pd,1 Pd,2 Pd,4 Resist. a sfil Rad,1 Rad,2 Rad,4	Appr. 2 - C 548,1 548,1 60,8 amento bulbo (GEO) 636,79 65,67	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0 kN kN kN kN kN kN kN kN kN kN kN kN
Carico limit Carico agen Resistenza Verifiche di Fattore di s	1º ordine 2, 2º ordine 2, 2º ordine 2, chiodo 1, re di progetto 1, te di progetto 1, te di progetto 1, te di progetto 1, di progetto in condizio 1, di progetto in condizio 1, 1º ordine 2, 2º ordine 1, chiodo 1, di progetto in condizio 1, si curezza agli SLU svoi 1, icurezza in condizione 1,	Tin asse Nr. trefoli [n] 8 3,0 3,0 5 1,0 5 1,0 - - - P _{d,1} P _{d,2} P _{d,4} ne SLU Resistenza R _{td,1} R _{td,2} R _{td,4} te nel rispetto de SLU e GEO second	ante Area trefoli [mm ²] 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8 di progetto t 653,48 190,70 el paragrafo 6 do Tab 6.2.1, f	f _{p(1)k} [N/mm ²] 1670,0 510,	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 3,3 Pd,1 Pd,2 Pd,4 Resist. a sfil Rad,1 Rad,2 Rad,4	Appr. 2 - C 548,1 548,1 60,8 amento bulbo (GEO) 636,79 65,67	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0 kN kN kN kN kN kN kN kN kN kN kN kN
Carico limit Carico agen Resistenza Verifiche di Fattore di s	1º ordine 2, 2º ordine 2, 2º ordine 2, chiodo 1, re di progetto 1, te di progetto 1, te di progetto 1, te di progetto 1, di progetto in condizio 1, di progetto in condizio 1, 1º ordine 2, 2º ordine 1, chiodo 1, di progetto in condizio 1, si progetto in condizio 1, i progetto in condizio 1, di progetto in condizio 1, chiodo 1, i sicurezza agli SLU svoi 1, i curezza in condizione 1,	Tin asse Nr. trefoli [n] [n] 8 3,0 5 1,0	ante Area trefoli [mm ²] 150,0 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8 di progetto t 653,48 190,70 el paragrafo 6 do Tab 6.2.1, l	f _{p(1)k} [N/mm ²] 1670,0 510,	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3 P _{d,1} P _{d,2} P _{d,4} Resist. a sfil R _{ad,1} R _{ad,2} R _{ad,4}	Appr. 2 - C 548,1 548,1 60,8 amento bulbo (GEO) 636,79 65,67	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0 kN kN kN kN kN kN kN kN kN
Carico limit Carico agen Resistenza Verifiche di Fattore di s	1º ordine 2, 2º ordine 2, 2º ordine 2, chiodo 1, re di progetto 1, te di progetto 1, te di progetto 1, te di progetto 1, di progetto in condizio 1, di progetto in condizio 1, 1º ordine 2, 2º ordine 1, chiodo 1, di progetto in condizio 1, si progetto in condizio 1, i sicurezza agli SLU svoi 1, i sicurezza in condizione 1,	Tin asse Nr. trefoli [n] [n] 8 3,0 5 1,0 - - <td>ante Area trefoli [mm²] 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8 di progetto t 653,48 190,70 el paragrafo 6 do Tab 6.2.1, f sicurezza re</td> <td>f_{p(1)k} [N/mm²] 1670,0 510,</td> <td>Lungh.tot. [m]</td> <td>Bulbo d'a Lunghezza [m] 5,0 3,3 Pd,1 Pd,2 Pd,4 Resist. a sfil Rad,1 Rad,2 Rad,4</td> <td>Appr. 2 - C 548,1 548,1 60,8 amento bulbo (GEO) 636,79 636,79 65,67</td> <td>Attrito laterale Qs [kN/m²] 320,0 320,0 100,0 kN kN kN kN kN kN kN kN kN kN</td>	ante Area trefoli [mm ²] 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8 di progetto t 653,48 190,70 el paragrafo 6 do Tab 6.2.1, f sicurezza re	f _{p(1)k} [N/mm ²] 1670,0 510,	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 3,3 Pd,1 Pd,2 Pd,4 Resist. a sfil Rad,1 Rad,2 Rad,4	Appr. 2 - C 548,1 548,1 60,8 amento bulbo (GEO) 636,79 636,79 65,67	Attrito laterale Qs [kN/m ²] 320,0 320,0 100,0 kN kN kN kN kN kN kN kN kN kN
Carico limit Carico agen Resistenza Verifiche di Fattore di s	1º ordine 2, 2º ordine 2, 2º ordine 2, chiodo 1, re di progetto 1, te di progetto 1, te di progetto 1, te di progetto 1, di progetto in condizio 1, di progetto in condizio 1, 1º ordine 2, 2º ordine 1, chiodo 1, di progetto in condizio 1, isicurezza agli SLU svoi 1, icurezza in condizione 1,	Tin asse Nr. trefoli [n] [n] 8 3,0 5 1,0 5 1,0 9 1,0<	ante Area trefoli [mm ²] 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8 di progetto t 653,48 190,70 el paragrafo 6 do Tab 6.2.1, 1 sicurezza re etto tirante 1.19	fp(1)k [N/mm²] 1670,0 1670,0 510,0 510,0 omb. 1 (STR) kN kN kN kN sirante (STR) kN sistenza di (STR) ≥ 1.0	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3 P _{d,1} P _{d,2} P _{d,2} P _{d,4} Resist. a sfil R _{ad,1} R _{ad,2} R _{ad,4} Fattore di si bulb	Appr. 2 - C 548,1 548,1 60,8 amento bulbo (GEO) 636,79 636,79 65,67 icurezza resist o d'ancoraggio 1.16	Attrito laterale Qs [kN/m²] 320,0 40'ancoraggio kN kN kN kN kN c a sfilamento 0 (GEO) ≥ 1.0
Carico limit Carico agen Resistenza Verifiche di Fattore di s	1º ordine 2, 2º ordine 2, 2º ordine 2, chiodo 1, re di progetto 1, te di progetto 1, te di progetto 1, te di progetto 1, di progetto in condizio 1, di progetto in condizio 1, 1º ordine 2, 2º ordine 1, chiodo 1, di progetto in condizio 1, di progetto in condizio 1, di progetto in condizio 1, 1º ordine 2, ordine 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Tin asse Nr. trefoli [n] 8 3,0 3,0 8 3,0 5 1,0 - - Pd,1 Pd,2 Pd,2 Pd,4 Resistenza Rtd,1 Rtd,2 Rtd,4 te nel rispetto de SLU e GEO second Fattore di prog Fattore di prog Rtd,1/Pd,1 Rtd,1/Pd,1 Rtd,2/Pd,3	ante Area trefoli [mm ²] 150,0 150,0 430,0 Appr. 1 - Co 548,1 548,1 60,8 di progetto t 653,48 190,70 el paragrafo 6 do Tab 6.2.1, f sicurezza re getto tirante 1,19 1.19	fp(1)k [N/mm²] 1670,0 1670,0 510,0 510,0 omb. 1 (STR) kN kN kN kN sirante (STR) kN kN sistenza di (STR) ≥ 1,0 ≥ 1,0	Lungh.tot. [m]	Bulbo d'a Lunghezza [m] 5,0 5,0 3,3 P _{d,1} P _{d,2} P _{d,2} P _{d,4} Resist. a sfil R _{ad,1} R _{ad,2} R _{ad,4} Fattore di si bulb R _{ad,1} /P _{d,1} R _{ad,2} /P _{d,2}	Appr. 2 - C 548,1 548,1 60,8 amento bulbc (GEO) 636,79 636,79 65,67 icurezza resist o d'ancoraggio 1,16 1.16	Attrito laterale Qs [kN/m²] 320,0 40'ancoraggio kN kN kN kN kN c. a sfilamento 0 (GEO) ≥ 1,0 ≥ 1,0

 $R_{d,i} \ge P_{d,i}$ Verifica OK

9.3.2 Stato limite ultimo – Stabilità globale dell'opera

Dalla figura seguente si evince il meccanismo di collasso. La stabilità globale del complesso opera-terreno è effettuata secondo l'Approccio 1, Combinazione 2 (A2+M2+R2).

Figura 22: Meccanismo di collasso secondo l'approccio 1 combinazione 2 – condizione statica

Il fattore di sicurezza è pari a 1,39; 1,39 > 1,1

La verifica è soddisfatta.
9.3.3 Stato limite di esercizio – Spostamenti

Nelle seguenti immagini vengono riportate le deformazioni massimali derivanti dall'analisi per fasi.

Deformazione in condizione statiche SLE

igura 23: Deformata dell'insieme terreno – parete in condizioni statiche (SLE)

Figura 24: Deformazioni verticali in condizioni statiche (SLE)

Le deformazioni verticali all'estremità superiore della parete sono dell'ordine dei 20 mm.

Figura 25: Deformazioni orizzontali in condizioni statiche (SLE)

Le deformazioni orizzontali all'estremità superiore della parete chiodata sono dell'ordine dei 20 mm.

10 Berlinese - Sezione 2-2 e sezione 3c-3c lato 2

10.1 Descrizione

Questa è costituita da micropali verticali e pali inclinati con diametro pari a 168,3 (v) mm. L'inclinazione degli elementi inclinati è pari a 25°. Lo spessore delle sezioni tubolari è 8,8 (v) e 6,3 (i) mm in acciaio S 355. Il contrasto per la paratia, oltre che con i succitati pali inclinati, è realizzato con l'ausilio di tiranti, i quali sono disposti su 2 ordini. Questi vengono realizzati con interasse tipica pari a 2,8 (2,6 m) ed inclinazione di 10° (5°) rispetto ad un piano orizzontale. I micropali come anche i tiranti sono collegati con una trave di ripartizione. La trave di coronamento sarà eseguita in c.a.

Sugli elaborati allegati sono riportati i parametri succitati.

10.2 Modello di calcolo

10.2.1 Geometria del modello di calcolo

Di seguito è riportato il modello computazionale della sezione più sfavorevole. (sezione 3c)

Figura 26:

Geometria del modello di calcolo

Per la modellazione del terreno si utilizza l'approccio HSS. I tiranti sono modellati come "node to node anchor", il bulbo come "embedded beam row" e i micropali con elementi "plate".

Parametri di calcolo dei tiranti-bulbo (embedded beam row):

diametro:0,16 mmodulo elastico E:25.000 N/mm² (per semplicità si considera solo il modulo elastico della miscelacementizia)

10.3 Verifiche

Si procede ora con le verifiche a stato limite ultimo, delle sezioni e di stabilità globale, e a stato limite di esercizio.

10.3.1 Stato limite ultimo – Sezioni / Elementi

Le sollecitazioni agenti sul sistema sono riportate nella tabella seguente, i valori sono caratteristici, non fattorizzati.

Figura 27: Inviluppo degli sforzi normali, della forza al taglio e dal momento flettente max.

Sollecitazi	oni caratter	istiche palo	verticale	SLE	SLU
Solleci	tazione	Interasse	~	Sollecitazione / palo	Sollecitazione / palo
[U/	′m]	[m]	Ϋ́Ε	[U/m]	[U/m]
N	-220	0,65	1,35	-143,0	-193,1
Q	125	0,65	1,35	81,3	109,7
М	32,5	0,65	1,35	21,1	28,5

Micropalo verticale 168,3x8,8 S355

Bending and shear check: RO168.3X8.8 UNI EN 1993-1-1

Input values:

Bending moment	M_{Ed} = 30 kNm
Shear force	V_{Ed} = 110 kN
Steel material	S 355

holzner bertagnolli

Cross section parameters:

 $A = 4410 \text{ mm}^2$ Cross section area $A_{vz} = 2807 \text{ mm}^2$ Shear area Cross section bending class 1 Cross section modulus y axis $W_{el,y} = 167000 \text{ mm}^3$ $W_{pl,v} = 223874 \text{ mm}^3$ Cross section modulus z axis $W_{el,z} = 167000 \text{ mm}^3$ $W_{pl,z} = 223874 \text{ mm}^3$

The greatest thickness of the cross section $t_{max} = 8.8 \text{ mm}$

 $V_{pl,Rd} = \frac{A_{vz} \cdot f_y}{\gamma_{M0} \cdot \sqrt{3}} = \frac{2807 \cdot 355}{1.05 \cdot \sqrt{3}} = 548 \text{ kN}$ Design plastic shear resistance

Design moment resistance reduced due to the shear, $V_{Ed} < 1/2V_{pl,Rd}$

 V_{Ed} = 110 kN < $\frac{1}{2}$ $V_{pl,Rd}$ = 274 kN => Shear effect can be neglected

Design bending resistance

$$M_{Rd,y} = \frac{W_{pl,y} \cdot f_y}{\gamma_{M0}} = \frac{224 \cdot 10^{-6} \cdot 355 \cdot 10^{6}}{1.05} = 75.7 \text{ kNm}$$

Check

 $s = \frac{M_{Ed}}{M_{Rd,y}} = \frac{30 \text{ kNm}}{75.7 \text{ kNm}} = 0.396 < 1$ => Is SUFFICIENT Cross section unity check

Prüfung des Stahlprofils bei einfachem Druck: RO168.3X8.8 **UNI EN 1993-1-1**

Belastung:

Axialkraft

 $N_{Fd} = 200 \text{ kN}$

Querschnittparameter:

	Querschnittfläche	A = 4410	mm ²
d = 0.168	Querschnittklasse	1	
	Stahlmaterial	S 355	
	Die größte Dicke des C)uerschnitts	t _{max} = 8.8 mm

Berechnung der Tragfähigkeit:

Drucktragfähigkeit

$$N_{c,Rd} = \frac{A \cdot f_{y}}{\gamma_{M0}} = \frac{4.41 \cdot 10^{-3} \cdot 355 \cdot 10^{6}}{1.05} = 1491 \text{ kN}$$

<u>Prüfung:</u>

 $\frac{N_{Ed}}{N_{c,Rd}} = \frac{200 \text{ kN}}{1491 \text{ kN}} = 0.134 < 1 \qquad => \text{ ist AUSREICHEND}$

Bending + compression: 0,40+0,13 = 0,53 < 1 => Is SUFFICIENT

10.3.1.2 Verifica micropali inclinati

Figura 28: Inviluppo degli sforzi normali max.

Sollecitazi	oni caratter	istiche palo	o inclinato	SLE	SLU
Solleci	tazione	Interasse		Sollecitazione / palo	Sollecitazione / palo
[U,	/m]	[m]	Ϋ́E	[U/m]	[U/m]
N	71	2,6	1,35	184,6	249,2

Micropalo inclinato 168,3x6,3 S355

<u>Check of steel profile for simple tension: RO168.3X6.3</u> <u>UNI EN 1993-1-1</u>

<u>Loading:</u>

Design axial force

 $N_{Ed} = 250 \text{ kN}$

Cross section parameters:

Tension bearing capacity

Non-weakened bearing capacity

$$\begin{split} N_{pl,Rd} &= \frac{A \cdot f_{\gamma}}{\gamma_{M0}} = \frac{3210 \cdot 355}{1.05} = 1085 \text{ kN} \\ N_{t,Rd} &= N_{pl,Rd} = 1085 \text{ kN} \end{split}$$

<u>Check</u>

$$s = \frac{N_{Ed}}{N_{t,Rd}} = \frac{250 \text{ kN}}{1085 \text{ kN}} = 0.23 < 1$$
 => Is SUFFICIENT

10.3.1.3 Verifica tiranti

Ctructural element	Nodo	Local number	x 🔺	Y 🔺	N 🔺	N _{min} 🔺	N _{max} 🔺
Structural element	Node	Local number	[m]	[m]	[kN]	[kN]	[kN]
NodeToNodeAnchor_1_1	5788	1	0,000	-5,658	491,789	0,000	499,934
Element 1-1 (Node-to-node anchor)	16858	2	5,977	-6,181	491,789	0,000	499,934
NodeToNodeAnchor_2_1	5413	1	0,000	-8,958	520,104	0,000	520,104
Element 2-2 (Node-to-node anchor)	16871	2	5,977	-9,481	520,104	0,000	520,104

Figura 29: Inviluppo degli sforzi normali tiranti

כוו	holzner.	bertagnolli

POSIZIONE/POSITION Verifica tiranti d'ancora	l aggio infissi nel	terreno								
Coefficienti parziali - N	TC2018 §6.6 - ti	ranti d'ancora	aggio							
Tipologia del tirante Tipologia del terreno		Temporaneo/ Definito dall'u	Kurzzeitanker Jtente/ Benutz	▼ erdefinier ▼	Azioni detern	ninate consid	lerando l'azior	ne sismica	No/Nein	•
Numero profili d'indagi	ine Tab. 6.6.III	≥ 5		•	Coefficiente	considerato n	el calcolo dell	a resistenza	ξa4	•
		Appr. 2 - Co A1+N	mb. 1 (GEO) /11+R1	1	Appr. 1 - Com A1+N	b. 1 (STR) 1+R3]	Combinazior	ne sismica	
Coefficiente per le azio Coefficiente di progette	oni O	Υ _E Υ _{Ra}	1,35 1,10	Tab 6.6.I	Ύε Ŷr	1,35 1,10		γ _E γ _R	1,00	
Coefficienti facenti rife Coefficiente di maggion Valore definito dall'ute a) Valori secondo tabelle Busta	r imento agli ar razione ente amante - Doix e Oste	α_{s} α_{s} ermayer	 1,35	a)	Coefficienti f a Tasso di lavor	acenti riferim o ammesso	nento ai tiranti	α _R γ _s	1,00 1,15	
Fattore di correlazione	in funzione di _l	prove di prog	etto Tab. 6.6	5. 11	Fattore di cor	relazione in f	unzione dalle	indagini geot ξ_{a3} ξ_{a4}	ecniche Tab	6.6.111
Fattore di correlazione Valore definito dall'ute	inte	ξ _{u/b}]				1		
Carichi agenti										
Sollecitazione caratteri	stica agente	Valoro por	combinazion		5					
1º	ordine		195.0	kN/m						
2º	ordine	$P_{k,2}$	200,0	kN/m						
3º	ordine	P _{k.3}		kN/m						
4º	ordine	P _{k,4}		kN/m						
Dati geometrici e mecca	anici									
		Ti	ante		٦		Bulbo d'a	ancoraggio	Attrito later	ale
	Interasse	Nr trefoli	Area trefoli	i f av	- г	Lungh tot	Lunghezza	Diametro		
	[m]	[n]	[mm ²]	[N/mm ²]		[m]	[m]	[m]	[kN/m ²]	
1º ordin	ie 2.6	4.0	150.0	1670.0	1 1	[11]	6.0	0.16	320.0	
2º ordin	e 2.6	4.0	150.0	1670.0			6.0	0.16	320.0	
3º ordin	ie ,	/		1				1		
4º ordin	e	-								
Carico limite di progett	0									
Carico agente di proget	to:				-					
			Appr. 1 - C	omb. 1 (STR)	1			Appr. 2 - C	omb. 1 (GEO)
1º	ordine	P _{d,1}	684,5	kN			P _{d,1}	684,5	kN	
2º	ordine	P _{d.2}	702,0	kN			P _{d.2}	702,0	kN	
3º 4º	ordine	P _{d.3} P _{d.4}	0,0	kN kN			P _{d.3} P _{d.4}	0,0	kN kN	
•			•	8	•				1	
Resistenza di progetto	in condizione S	LU								
		Resistenza	di progetto	tirante (STR)			Resist. a sfi	lamento bulbo	o d'ancoraggi	0
10	ordine	P	871 20	kN	-		P	(GEO)	kN	_
	ordine	R _{td.1}	871 30	kN			R	764,15	kN	
2-	ordine	Ptd,2	0.00	kN			R	0.00	kN	
40	ordine	Ptd,3	0,00		-		Nad,3	0,00		
Verifiche di sicurezza a Fattore di sicurezza in c	gli SLU svolte n condizione SLU	el rispetto de e GEO secon	el paragrafo do Tab 6.2.I,	6.6.2 delle N 6.2.II e 6.6.I	TC2018 NTC 2018					
		Fattore di	sicurezza re	esistenza di			Fattore di s	icurezza resist	a sfilament	0
10	ordine	prog	ello tirante	(SIK)	-		bulb	u ancoraggio		_
	ordine	R /p	1.2/	21,0	-		R /P	1,12	21,0	
29	ordine	R /P	1,24	21,0	-		R /P	1,09	21,0	
<u> </u>	ordine	R _{td,4} /P _{d,4}		≥ 1,0 ≥ 1,0	-		R _{ad,3} /P _{d,3}		≥ 1,0	
Vorifica carico limite							DND	Varifica OK		
verifica carico limite							κ _{d,i} ≥ Ρ _{d,i}	verifica OK		

10.3.2 Stato limite ultimo – Stabilità globale dell'opera

Dalla figura seguente si evince il meccanismo di collasso con il fattore di sicurezza più basso. Tutti gli altri meccanismi di collasso hanno un fattore di sicurezza più alto. La stabilità globale del complesso operaterreno è effettuata secondo l'Approccio 1, Combinazione 2 (A2+M2+R2).

Il fattore di sicurezza è pari a 1,27; 1,27 > 1,1

La verifica è soddisfatta.

10.3.3 Stato limite di esercizio – Spostamenti

Nelle seguenti immagini vengono riportate le deformazioni massimali derivanti dall'analisi per fasi.

Deformazione in condizione statiche SLE

Figura 31: Deformata dell'insieme terreno – parete in condizioni statiche (SLE)

Figura 32: Deformazioni verticali in condizioni statiche (SLE)

Le deformazioni verticali sotto le fondazioni sono dell'ordine dei 2-4 mm.

Figura 33:Deformazioni orizzontali in condizioni statiche (SLE)Le deformazioni orizzontali sono dell'ordine di 8-10 mm.

11 Berlinese - Sezione 3a-3a lato 2

11.1 Descrizione

Questa è costituita da micropali verticali e pali inclinati con diametro pari a 168,3 (v) mm. L'inclinazione degli elementi inclinati è pari a 10°. Lo spessore delle sezioni tubolari è 8,8 (v) e 6,3 (i) mm in acciaio S 355. Il contrasto per la paratia, oltre che con i succitati pali inclinati, è realizzato con l'ausilio di tiranti, i quali sono disposti su 3 ordini. Questi vengono realizzati con interasse tipica pari a 2,8 ed inclinazione di 10° rispetto ad un piano orizzontale. I micropali come anche i tiranti sono collegati con una trave di ripartizione. La trave di coronamento sarà eseguita in c.a.

Sugli elaborati allegati sono riportati i parametri succitati.

11.2 Modello di calcolo

11.2.1 Geometria del modello di calcolo

Di seguito è riportato il modello computazionale della sezione più sfavorevole.

Per la modellazione del terreno si utilizza l'approccio HSS. I tiranti sono modellati come "node to node anchor", il bulbo come "embedded beam row" e i micropali con elementi "plate".

Parametri di calcolo dei tiranti-bulbo (embedded beam row):

diametro:0,16 mmodulo elastico E:25.000 N/mm² (per semplicità si considera solo il modulo elastico della miscelacementizia)

11.3 Verifiche

Si procede ora con le verifiche a stato limite ultimo, delle sezioni e di stabilità globale, e a stato limite di esercizio.

11.3.1 Stato limite ultimo – Sezioni / Elementi

Le sollecitazioni agenti sul sistema sono riportate nella tabella seguente, i valori sono caratteristici, non fattorizzati.

11.3.1.1 Verifica micropali verticali

Micropalo verticale 168,3x8,8 S355

Sollecitazi	oni caratter	istiche palo	verticale	SLE	SLU
Solleci	tazione	Interasse	~	Sollecitazione / palo	Sollecitazione / palo
[U,	/m]	[m]	Ϋ́Ε	[U/m]	[U/m]
N	-248	0,7	1,35	-173,6	-234,4
Q	106	0,7	1,35	74,2	100,2
М	35,5	0,7	1,35	24,9	33,5

Bending and shear check: RO168.3X8.8 UNI EN 1993-1-1

Input values:

Bending moment	$M_{Ed} = 33.5 \text{ kNm}$
Shear force	$V_{Ed} = 101 \ kN$
Steel material	S 355

Cross section parameters:

Cross section area	$A = 4410 \text{ mm}^2$
Shear area	$A_{vz} = 2807 \text{ mm}^2$
Cross section bending cl	ass 1
Cross section modulus y	axis

 $W_{el,y} = 167000 \text{ mm}^3$ $W_{pl,y} = 223874 \text{ mm}^3$

Cross section modulus z axis

 $W_{el,z} = 167000 \text{ mm}^3$ $W_{pl,z} = 223874 \text{ mm}^3$

The greatest thickness of the cross section $t_{max} = 8.8 \text{ mm}$

Design plastic shear resistance

 $V_{pl,Rd} = \frac{A_{vz} \cdot f_y}{\gamma_{M0} \cdot \sqrt{3}} = \frac{2807 \cdot 355}{1.05 \cdot \sqrt{3}} = 548 \text{ kN}$

Design moment resistance reduced due to the shear, $V_{Ed} < 1/2V_{pl,Rd}$

$$V_{Ed} = 101 \text{ kN} < \frac{1}{2} V_{pl,Rd} = 274 \text{ kN} => Shear effect can be neglected$$

Design bending resistance

$$M_{Rd,y} = \frac{W_{pl,y} \cdot f_y}{\gamma_{M0}} = \frac{224 \cdot 10^{-6} \cdot 355 \cdot 10^{6}}{1.05} = 75.7 \text{ kNm}$$

<u>Check</u>

Cross section unity check $s = \frac{M_{Ed}}{M_{Rd,y}} = \frac{33.5 \text{ kNm}}{75.7 \text{ kNm}} = 0.443 < 1$ => Is SUFFICIENT

<u>Check of steel profile on simple compression: RO168.3X8.8</u> <u>UNI EN 1993-1-1</u>

<u>Loading:</u>

 \sim

Axial force $N_{Ed} = 235 \text{ kN}$

Cross section parameters:

Cross section area $A = 4410 \text{ mm}^2$ Cross section class1Steel materialS 355

The greatest thickness of the cross section $t_{max} = 8.8 \text{ mm}$

Bearing capacity calculation:

Compression bearing capacity $N_{c,Rd} = \frac{A \cdot f_y}{\gamma_{M0}} = \frac{4.41 \cdot 10^{-3} \cdot 355 \cdot 10^6}{1.05} = 1491 \text{ kN}$

Check:

 $s = \frac{N_{Ed}}{N_{c,Rd}} = \frac{235 \text{ kN}}{1491 \text{ kN}} = 0.158 < 1$ => Is SUFFICIENT

Bending + compression: 0,44+0,16 = 0,60 < 1 => Is SUFFICIENT

11.3.1.2 Verifica micropali inclinati

Figura 36: Inviluppo degli sforzi normali max.

Micropalo inclinato 168,3x6,3 S355

Sollecitazi	oni caratter	istiche palo	inclinato	SLE	SLU
Sollecit	tazione	Interasse		Sollecitazione / palo	Sollecitazione / palo
[U/	′m]	[m]	Ϋ́Ε	[U/m]	[U/m]
N	72,5	2,8	1,35	203,0	274,1

<u>Check of steel profile for simple tension: RO168.3X6.3</u> <u>UNI EN 1993-1-1</u>

<u>Loading:</u>

Design axial force

 $N_{Ed} = 275 \text{ kN}$

Cross section parameters:

Cross section areaA = 3210 mm^2 Steel materialS 355The greatest thickness of the cross section $t_{max} = 6.3 \text{ mm}$

Tension bearing capacity

Non-weakened bearing capacity

```
\begin{split} N_{pl,Rd} &= \frac{A \cdot f_{y}}{\gamma_{M0}} = \frac{3210 \cdot 355}{1.05} = 1085 \text{ kN} \\ N_{t,Rd} &= N_{pl,Rd} = 1085 \text{ kN} \end{split}
```

<u>Check</u>

 $s = \frac{N_{Ed}}{N_{t,Rd}} = \frac{275 \text{ kN}}{1085 \text{ kN}} = 0.253 < 1$ => Is SUFFICIENT

11.3.1.3 Verifica tiranti

Chrystern Lalamant	Ale de 👗	A sector se	x 🔺	Y 🔺	N 🔺	N _{min} 🔺	N _{max} 🔺
Structural element	Node	Local number	[m]	[m]	[kN]	[kN]	[kN]
NodeToNodeAnchor_1_1	6023	1	0,000	-4,600	484,407	0,000	486,650
Element 1-1 (Node-to-node anchor)	17644	2	5,909	-5,642	484,407	0,000	486,650
NodeToNodeAnchor_3_1	5991	1	0,000	-7,600	504,662	0,000	505,216
Element 2-2 (Node-to-node anchor)	17657	2	4,924	-8,468	504,662	0,000	505,216
NodeToNodeAnchor_2_1	5914	1	0,000	-10,600	489,445	0,000	489,445
Element 3-3 (Node-to-node anchor)	17670	2	4,924	-11,468	489,445	0,000	489,445

Figura 37: Inviluppo degli sforzi normali tiranti

Coefficienti	parziali - NTC20	18 §6.6 - ti	ranti d'ancora	aggio							
Tinals			Temporer	(_	Aslastic				No (Noir	1
Tipologia de	ei tirante		Definito dall'	urzzeitanker	erdefinier 👻	Azioni dete	rminate consid	erando l'azion	e sismica	NO/Nein	1
Numoro pro	Tipologia dei terreno		Definito dall U	itente/ benutze					1		
Numero pro	ini u nuagine n	ab. 0.0.111	2.0			coemciento	e considerato i	lei calcolo dell	a resistenza	çur -	1
			Appr. 2 - Col	mb. 1 (GEO)		Appr. 1 - Co	mb. 1 (STR)		Combinazion	e sismica	
			A1+N	/1+R1	7	A1+	M1+R3				-
Coefficiente	e per le azioni		γε	1,35		γε	1,35		γε	1,00	
Coefficiente	e di progetto		Ϋ́Ra	1,10	Tab 6.6.I	Ϋ́R	1,10		Ϋ́R	1,00	
										•	
Coefficienti	facenti riferime	nto agli an	ncoraggi		~	Coefficient	facenti riferin	nento ai tiranti			
Coefficiente	e di maggiorazio	ne	αs		a)	Tasso di lav	oro ammesso		α _R	1,00	
Valore defir	nito dall'utente		α	1,35	1				γs	1,15	J
a) Valori second	lo tabelle Bustamant	e - Doix e Oste	ermayer								
Fattore di co	orrelazione in fu	nzione di p	prove ai prog	etto Tab. 6.6	7	Fattore di c	orrelazione in i	runzione dalle	indagini geote	chiche Tab. 6.6	3.III]
			Sa1 E						δa3 ε.	1,50	-
Fattore di co	rrelazione		582						534	1,55	1
Valore defin	nito dall'utente		ξ/b		1						
valore actin			10/0								
Carichi agen	ti										
Sollecitazion	ne caratteristica	agente									
			Valore per o	combinazior	ne GEO e STR	ר					
	1º ordii	ne	P _{k1}	175,0	kN/m						
	2º ordii	ne	P _{k.2}	181,0	kN/m						
	3º ordii	ne	P _{k.3}	175,0	kN/m						
	4º ordii	ne	P _{k,4}		kN/m						
Dati geomet	trici e meccanici										
			T			٦		B 16 - 40			1
	1	1	Na hasfali	ante Area trafali	1	-	Lungh tet	Buibo d a	Diamatra	Attrito laterale	
		Interasse	INF. trefoil	Area treion	[N/mm2]		Lungn.tot.	Lungnezza	Diametro	Us [kbl/m²]	
	19 ordino	20	[n] 4.0	150.0	[N/mm-]		Įmj	[m] 6.0	0.16	220.0	
	2º ordine	2,0	4,0	150,0	1670.0	-		6,0	0,10	320,0	ł
	3º ordine	2,0	40	150,0	1670.0	~		6.0	0,10	320,0	
	4º ordine		1			-		-,	-,		í
).	,		-			\$	2	
Carico limite	e di progetto										
Carico agent	te di progetto:					-					-
	-			Appr. 1 - Co	omb. 1 (STR)	_			Appr. 2 - Co	omb. 1 (GEO)	
	1º ordii	ne	P _{d.1}	661,5	kN	-		P _{d.1}	661,5	kN	
	2º ordi	ne	P _{d.2}	684,2	kN	-		P _{d.2}	684,2	kN	
	3º ordii	ne	P _{d.3}	661,5	kN	-		P _{d.3}	661,5	kN	
	4º ordi	ne	P _{d,4}	0,0	kN	Į		P _{d,4}	0,0	kN	ļ
<u> </u>											
Resistenza o	li progetto in co	ndizione S	LU								
						7					1
			Resistenza	di progetto 1	tirante (STR)			Resist. a sfil	amento bulbo	d'ancoraggio	
,					()	-		L	(GEO)	l	1
	1º ordi	ne	R _{td,1}	871,30	KN	-		R _{ad,1}	764,15	IKN	-
	2º ordi		R _{td,2}	8/1,30	KN	-		K _{ad,2}	/64,15	KN	1
	3≚ ordii	11 2	K _{td,3}	8/1,30	KIN	-		K _{ad,3}	/64,15	KN	1
	4= 0/01	ine ine	1	1	1	I		I	1	1	I
Verifiche di	sicurezza agli SI	U svolte n	el rispetto de	l paragrafo (6.6.2 delle N'	TC2018					
Fattore di si	curezza in condi	zione SLU	e GEO secono	to Tab 6.2.1.	6.2.II e 6.6.I I	NTC 2018					
											_
			Fattore di	sicurezza re	sistenza di	ר		Fattore di si	curezza resist.	a sfilamento]
			prog	<u>etto ti</u> rante	(STR)			bulb	o d'ancoraggio	(GEO)	
	1º ordii	ne	$R_{td,1}/P_{d,1}$	1,32	≥ 1,0]		$R_{ad,1}/P_{d,1}$	1,16	≥ 1,0	J
	2º ordii	ne	$R_{td,2}/P_{d,2}$	1,27	≥ 1,0]		$R_{ad,2}/P_{d,2}$	1,12	≥ 1,0]
	3º ordii	ne	$R_{td,3}/P_{d,3}$	1,32	≥ 1,0			$R_{ad,3}/P_{d,3}$	1,16	≥ 1,0]
	4º ordi	ne	$R_{td,4}/P_{d,4}$		≥ 1,0			$R_{ad,4}/P_{d,4}$		≥ 1,0	
Verifica cari	co limite							R _{d,i} ≥P _{d,i}	Verifica OK		

11.3.2 Stato limite ultimo – Stabilità globale dell'opera

Dalla figura seguente si evince il meccanismo di collasso con il fattore di sicurezza più basso. Tutti gli altri meccanismi di collasso hanno un fattore di sicurezza più alto. La stabilità globale del complesso operaterreno è effettuata secondo l'Approccio 1, Combinazione 2 (A2+M2+R2).

Figura 38: Meccanismo di collasso secondo l'approccio 1 combinazione 2 – condizione statica

Il fattore di sicurezza è pari a 1,42; 1,42 > 1,1

La verifica è soddisfatta.

11.3.3 Stato limite di esercizio – Spostamenti

Nelle seguenti immagini vengono riportate le deformazioni massimali derivanti dall'analisi per fasi.

Deformazione in condizione statiche SLE

Figura 39: Deformata dell'insieme terreno – parete in condizioni statiche (SLE)

Figura 40: Deformazioni verticali in condizioni statiche (SLE)

Le deformazioni verticali sotto le fondazioni sono dell'ordine dei 2 mm.

Figura 41: Deformazioni orizzontali in condizioni statiche (SLE)

Le deformazioni orizzontali sono dell'ordine di 6-7 mm.

12 Parete chiodata - Sezione 3a-3a e sezione 3c-3c lato1

12.1 Descrizione

Questa è costituita da sei ordini di chiodi autoperforanti con un interrasse orizzontale di 1,40 m con una lunghezza di 3m. Lo spritzbeton ha uno spessore di 15 cm.

Sugli elaborati allegati sono riportati i parametri succitati.

12.2 Modello di calcolo

12.2.1 Geometria del modello di calcolo

Di seguito è riportato il modello computazionale della sezione più sfavorevole.

Per la modellazione del terreno si utilizza l'approccio HSS. I chiodi vengono modellati con "embedded beam row"

Parametri di calcolo dei chiodi autoperforanti (embedded beam row):

diametro:	0,08m
modulo elastico E:	25.000 N/mm ² (per semplicità si considera solo il modulo elastico della miscela
cementizia)	

12.3 Verifiche

Si procede ora con le verifiche a stato limite ultimo, delle sezioni e di stabilità globale, e a stato limite di esercizio.

12.3.1 Stato limite ultimo – Sezioni / Elementi

Le sollecitazioni agenti sul sistema sono riportate nella tabella seguente, i valori sono caratteristici, non fattorizzati.

12.3.1.1 Verifica tensione chiodi

Figura 43: Inviluppo degli sforzi normali

כורו	holzner. bertagnolli
	opgipgoring

Verifica chiodi infissi nel terreno

Coefficienti parziali - NTC2018 §6.6 -	chiodi		
Tipologia di chiodo	Temporaneo/Kurzzeitanker	Azioni determinate considerando l'azione sismica	No/Nein 🔻
Tipologia del terreno	Definito dall'utente/ Benutzerdefinier 🔻		ito/iteiii
Numero profili d'indagine Tab. 6.6.II	≥5 ▼	Coefficiente considerato nel calcolo della resistenza	ξ a3 ▼
	Appr. 2 - Comb. 1 (GEO)	Appr. 1 - Comb. 1 (STR) Combinazion	ie sismica
	A1+M1+R1	A1+M1+R3	
Coefficiente per le azioni	<u>γ_E 1,35</u>	<u>γ_E</u> 1,35 <u>γ_E</u>	1,00
Coefficiente di progetto	<u>Υ_{Ra} 1,10</u> Tab 6.6.I	<u>Υ</u> _R 1,10 <u>Υ</u> _R	1,00
Coefficienti facenti riferimento agli	ancoraggi	Coefficienti facenti riferimento ai chiodi	
Coefficiente di maggiorazione	α _s a)	Tasso di lavoro ammesso α_{R}	1,00 b)
Valore definito dall'utente	α _s 1,35	γ _s	1,15
a) Valori secondo tabelle Bustamante - Doix e O	stermayer	b) Valore definito nelle raccomandazioni AICAP maggio 1993 § 5.4.2	
Fattore di correlazione in funzione d	li prove di progetto Tab. 6.6.II	Fattore di correlazione in funzione dalle indagini geoto	ecniche Tab. 6.6.III
	ξ _{a1}	<u>ξa3</u>	1,60
P	ς _{a2}	ξ _{a4}	1,55
Valore definito dall'utente	ξ _{u/b}		
o · · · ·			
Sollecitazione caratteristica agente		-	
	Valore per combinazione GEO e STF	R	
1º ordine	P _{k,1} 67,0 kN/m		
Dati geometrici e meccanici			
Dati geometrici e meccanici			
		Bulbo d'ancoraggio	Attrito laterale
Interas	se Nr. trefoli Area trefoli f _{o(1)k}	Lungh.tot. Lunghezza Diametro	as
[m]	[n] [mm ²] [N/mm ²]	[m] [m] [m]	[kN/m ²]
1º ordine 1,40	1,0 430,0 510,0	2,5 0,08	320,0
Carico limite di progetto			
Carico agente di progetto:	Appr 1 Comb 1 (STP)	Appr 2-C	amb 1(GEO)
1º ordine	P., 126.6 kN	P., 1266	
	Fd.1 120,0 KN	r _{d,1} 120,0	KIN
L			
Resistenza di progetto in condizione	SLU		
		Desire a filmer (1.0	d'an coro
	Resistenza di progetto tirante (STR) Resist. a stilamento bulbo	a ancoraggio
10 ordino	D 100.70 List	(GEO)	16N
1º ordine	R _{td,1} 190,70 kN	R _{ad,1} 154,22	KIN
Varificha di sicurazza agli SUU avalta	nal rispatto dal paragrafo 6 6 2 dalla N	17C2018	
Fattore di sicurezza in condizione SL	U e GEO secondo Tab 6.2.1, 6.2.II e 6.6.I	NTC 2018	
	Fattore di sicurazza resistenza di	Eattore di sigurazza resist	a sfilamento
	nogetto tirante (STD)	Factore of scorezza resist	
1º ordine			>10
1= Olulle	<u>ntd,1/rd,1</u> 1,51 ≥1,0	R _{ad,1} /P _{d,1} 1,22	≤ 1,0

 $R_{d,i} \ge P_{d,i}$ Verifica OK

Verifica carico limite

2020-021_DEF_GEO_RST_001_C

12.3.2 Stato limite ultimo – Stabilità globale dell'opera

Dalla figura seguente si evince il meccanismo di collasso con il fattore di sicurezza più basso. Tutti i altri meccanismi di collasso hanno un fattore di sicurezza più alto. La stabilità globale del complesso operaterreno è effettuata secondo l'Approccio 1, Combinazione 2 (A2+M2+R2).

Figura 44: Meccanismo di collasso secondo l'approccio 1 combinazione 2 – condizione statica

Il fattore di sicurezza è pari a 1,15; 1,15 > 1,1 La verifica è soddisfatta.

12.3.3 Stato limite di esercizio – Spostamenti

Nelle seguenti immagini vengono riportate le deformazioni massimali derivanti dall'analisi per fasi.

Deformazione in condizione statiche SLE

Le deformazioni verticali sono dell'ordine dei 8 mm.

Figura 47: Deformazioni orizzontali in condizioni statiche (SLE)

Le deformazioni orizzontali sono dell'ordine di 8-10 mm.

13 "Berliner Verbau" Sezione 2-2, 3a-3a e 3c-3c

Calcolo con Eurocode 7-1 e NTC 2018

Valori di sistema			
Testa paratia a traslazion	e libera		
Spinta attiva terreno			
Terreno non coesivo			
Piano campagna su	0.00 r	m	
Livello falda	100.00 r	n	
1. Pendio terreno	inizio	[m]	0.00
	fine	[m]	1.79
	altezza	[m]	1.70
Conflictentianistation Fra			

Coefficienti spinta terr. Eurocode 7

• ••••	
Struttura	paratia

Sez.	tipo par.	x₁[m]	z₁[m]	E[MN/m ²]	A[cm²/lfm]	g[kN/m³]
	Profilo	x ₂ [m]	z₂[m]	l[cm4/lfm]	d[cm]	
		a[m]	b[m]	EI[MN*m ²]		
1	Paratia berlin.	0.00	1.70	210000.00	75.80	78.50
	HEB 220	0.00	8.70	6.7417E+03	22.00	
		1.20	0.30	14.16		

Valori strati del terre	no		Schicht1	Schicht2
Altezza strato	h	[m]	2.80	97.20
Attr. interno	Ŷ	[gradi]	30.00	38.00
Attr. par. att.	δ _a	[gradi]	20.00	25.33
Attr. par. pass.	δ _ρ	[gradi]	-20.00	-25.33
Coesione attiva	Ca	[kN/m²]	5.0	0.0
Coesione passiva	Cp	[kN/m²]	5.0	0.0
Peso spec. terreno		[kN/m³]	18.5	20.0
Peso spec. sotto spint	а	[kN/m³]	20.0	10.0
Attrito rivestim.		[MN/m ²]	0.05	0.17
Spinta punta		[MN/m ²]	1.00	2.50
Coefficienti spinta te	rreno			
Coeff.sp.terreno	K _{agh}	(attiva)	0.285	0.200
Coeff.coesione	K _{ach}	(attiva)	1.238	0.000
Coeff. sovracc.	K _{aph}	(attivo)	0.285	0.200
Coeff.res. terreno	K _{pgh}	(pass.)	4.633	8.153
Coeff.res. coes.	K _{pch}	(pass.)	6.292	0.000
Coeff. sovracc.	K	(passivo)	4.633	8.153

Sovraccarichi e paratia in coordinate globali

Tutti i carichi e le grandezze di taglio si riferiscono a 1 m di paratia.

Carichi lineari sul terreno

Nom	e CA	q	X _A	X _E	Zo	Tipo
Q	Q	20.00	2.30	10.00	-1.70	0

(G = permanente, Q = variabile, B = dal peso proprio terreno)

Applicazione dei carichi a blocco:

0 = Standard: secondo Eurocode 7

Fattori di sicurezza per frattura idraulica (SL HYD)

γ -	H 1.300	G,stb 0.900							
Fattori di	sicurezz	a per cal	colo della	a lunghe	zza della	parete	GEO)		
Calcolo c	on approc	cio 1							
Combinaz	zione 1 co	n fattori di	sicurezz	a die grup	opi A1 + N	11 + R1			
<u>7</u> -	G	E0g	W	L	01	Q	Qv		
	1.300	1.300	1.300	1.300	1.300	1.500	1.500		
γ-	Ep	Wg	γ	Ø	С	cu	R,h	b	s
•	1.000	1.000	1.000	1.000	1.000	1.000	1.100	1.000	1.000
Combina	zione 2 co	n fattori di	sicurezz	a die grup	opi A2 + N	12 + R1			
γ-	G	E0g	W	L	01	Q	Qv		
•	1.000	1.000	1.000	1.000	1.000	1.300	1.300		
γ-	Ep	Wg	γ	q	С	cu	R,h	b	S
•	1.000	1.000	1.000	1.250	1.250	1.400	1.100	1.000	1.000

Calcolo delle forze (STR) con gli stessi fattori come Combinazione rappresentativa per il calcolo della lunghezza del muro (GEO)

Calcolo delle deformazioni con valori charatterisici (SLS)

Calcolo delle lunghezze die ancoraggi (GEO) con gli stessi fattori come Calcolo della lunghezza parete (GEO)

	anofficiente sie norm nor
7	coenciente sic. parz. per
Н	Pressione di filtrazione (terreno sfavorevole)
G,stb	Azioni permanenti favorevoli
G	spinta da peso proprio terr. (escl. spinta a rip.)
E0g	spinta a riposo da peso proprio terreno e carichi perm.
W	pressione acqua come azione sfavorevole
L	press. acqua da carichi perm. (escl. spinta a rip)
01	carichi permanenti con spinta terr. a riposo
Q	azioni da carichi variabili
Qv	azioni da carichi variabili ferroviari
Ep	resistenza terreno
Wg	pressione acqua come azione favorevole
γ	Peso specifico
φ	coefficiente attrito tan(ϕ)
С	coesione c
cu	Coesione non drenata
R,h	resistenza allo slittamento
b	spinta punta
s	Attrito laterale del bordo

Caso carico Q

Andamento spinta terreno (char.) senza ridistribuzione [kN/m²]

Prof. z	Somma-e,	Somma e _h	e _h -terreno+est.	e _h -sovraccarico
0.00	0.000	0.383	0.383	0.000
0.00	0.000	4.082	0.383	3.700
0.13	0.264	7.161	3.462	3.700
2.80	14.076	21.254	17.555	3.700
2.80	14.076	20.344	16.645	3.700
7.00	71.223	37.139	33.439	3.700

Prof. z	Somma-e _v	Somma e _h	e _h -terreno+est.	e _h -sovraccarico
7.00	71.223	37.139	33.439	3.700
15.02	272.994	69.194	65.495	3.700
15.02	272.994	65.495	65.495	0.000
100.00	9743.909	405.320	405.320	0.000

Scavo nr. 1

Paratia molto sporgente Piede della paratia incastrato (Blum)

La spinta negativa del terreno agisce sul sistema statico

Combinazione di calcolo rappresentativa: Combinazione 2

Nessuna ridistribuzione

Iterazione lunghezza paratia

Lunghezza	Somma M	Somma M (Weissenbach)
3.60	110.40	
4.60	116.41	
5.50	-9.62	
5.41	10.89	
5.44	4.27	
5.46		92.16
6.46		-39.70
6.36		-21.84
6.17		9.13
6.20		4.49
6.22		1.35
6.23		-0.24

*** Avviso: il angolo d'inclinazione della forza sostitutiva C δ_e è stato ridotto

Prof z [m]	δ [gradi] δ [gradi]		
1 101. 2 [11]	(valore iniz.)	(valore ridotto)	
2.800	10.000	0.000	
7.000	12.667	0.000	
100.000	12.667	0.000	
Somma totale V (char.)	31.51 kN/m	15.29 kN/m	
Spinta pass. terr	Valore car.		Valore prog.
Prof. z [m]	e _{phk} [kN/m²]	Prof. z [m]	e _{ph.d} [kN/m²]
0.000	0.000	0.000	0.000
3.100	0.000	3.100	0.000
6.230	-510.401	6.230	-328.093
Somma E _{phk} =	-798.777 kN/m	Somma Ephd=	-513.465 kN/m

Suppl. prof. infissione EAB (EB25) = 0.2* 3.13 m = 0.63 m Lunghezza tot. paratia: 6.86 m, Prof. infiss. t = 3.76 m (incl. suppl. prof. infissione secondo EAB)

Prof. scavo z = 3.10 m, livello acqua = 100.00 m Forza appoggio piede: $E_d = 278.54 \text{ kN} \leq R_d =$ 513.47 kN Forza sostitutiva su piede: C_d = -203.62 kN

Verifica di Weissenbach per m larghezza paratia

B0= 0.300 m, BSR= 0.900 m, BSK= 0.900 m, KR	= 6.01, KK= 2.9	92	
B₀ minore di 0.3T= 0.939 m,	R _k =	333.02 kN	
BL=A-B0= 0.90m minore di profondità infissi	R _k =	386.59 kN	
Resist. terr. con y _{En} /0.800 = 1.250:	R _d =	266.41 kN	
1-	E _d =	266.19 kN <	= R _d

Carico e grandezze di taglio della paratia di scavo

Grandezze di taglio caratteristiche

Deformazioni caratteristiche

Tutti i valori per m paratia rispetto ad asse baricentrico

Prof. z	Spinta H	Deform.	Momento		F.za tras.	A-H	Cost. el.
[m]	h [kN/m]	w [mm]	M [kNm]		Q [kN]	[kN]	[kN/mm]
0.000	4.08	86.8	0.00		0.00		
0.129	7.16	84.1	-0.04		-0.73		
1.014	11.83	65.7	-4.09		-9.12		
2.800	21.25	30.1	-44.28		-38.67		
2.800	20.34						
3.100	21.54	24.8	-56.81		-44.96		
3.100	0.00						
3.235	-5.23	22.5	-62.89		-44.60		
4.625	-58.95	4.9	-102.53	Μ	0.00		
5.187	-80.65	1.5	-92.10		39.19		
6.230	-120.97	0.0	0.00		144.37		

Significato: M=max/min-M (Q=0), A=Ancor. o sostegno, B=molle elastiche E=appoggio terreno

Scavo nr. 1	Mmax	0.00	Qamm	0.00,	Qmax	144.37	Mamm	0.00
	Mmin	-102.53	Qamm	0.00,	Qmin	-44.96	Mamm	-56.81
	maxw	86.8 mm	n					

Carico longitudinale della paratia dello scavo

Prof. z	Car.long.	F.za normale
[m]	n [kN/m]	N [kN]
0.000	2.08	0.00
0.129	3.20	-0.34
1.014	4.90	-3.92
2.800	8.33	-15.74
2.800	10.23	-15.74
3.100	10.79	-18.89
3.100	0.60	-18.89
3.235	-0.50	-18.90
4.625	-11.75	-10.33
5.187	-16.29	-2.52
6.230	-24.74	18.88

(δ_a) (α)

(გ_c)

Equilibrio forze H e V

(Valori di progetto con coefficienti di sicurezza)

	da z	аz	componente H	componente V	[kN/m]
Spinta terreno:	0.00	3.10	62.79	23.75	(δ _a)
Ancoraggi/Puntoni:			0.00	0.00	(α)
Forza sost. piede:			203.62	0.00	<mark>(</mark> გ_)
Somma:			266.41	23.76	
Res.ter. Weissenbach:	3.10	6.23	-266.41		
(Comp. attrito determ .:			-117.83)	-55.78	(රූ)
(Comp. coesione determ.:			0.00)	0.00	(ర్త్)
Peso proprio paratia:				3.71	
Somma tot. (con peso paratia):	0.00	-28.32	(v.l'alto)		

Verifica della comp. verticale d.resistenza terreno attivato (EAB,EB 9)				
Forza:		V _k [kN/m]		
Spinta terreno:		17.05		
Ancoraggi/Puntoni:		0.00		
Peso proprio paratia:		3.71		
Forza sost. piede:	(1/2 C _v)	0.00		
Somma:		20.76		
Resistenza terreno:	(B _v -1/2*C _h *tan(δ _ρ))	5.47		

Verifica: $V_k = 20.76 \text{ kN/m} \ge B_{vk} = 5.47 \text{ kN/m}$ *** Verifica soddisfatta ***

Verifica delle forze verticali nel sottosuolo (EAB, EB 84)

Azioni			V _d [kN/m]	
Spinta terreno:			23.75	(် _a)
Ancoraggi/Puntoni:			0.00	(Ø)
Peso proprio paratia:			3.71	
Forza sost. piede:	(1/2 C _v)		0.00	(ბ _c)
Somma:			27.46	
Resistenze			R _d [kN/m]	
Superficie del piede per pres	sione a pico (cm²/m):	589.0		
Spinta punta:			147.26	
Attrito rivest .:			208.96	
Somma:			356.22	

Verifica: $V_d = 27.46 \text{ kN/m} \le R_d = 356.22 \text{ kN/m}$ *** Verifica soddisfatta ***

Rottura del terreno

Lastfall Q (Typ: BS-T)							
Gleitkörper von $x = -2.50$ bis	6.03 m						
Gleitkreis: $x_M = 1.77 \text{ m}, z_M =$	-3.06 m, R =	4.27 m					

Bestimmung der Lamellen-Anteile

X _M	Breite	Eigen-	Auflast	Wasser-	Ø	с	ป
[]	D	gewicht	FL-N 1/ 1	auflast	[O	[I_N]/ 21	10II
[m]	[m]	[KIV/m]	[KIV/m]	[KIV/m]	[Grad]	[KIV/m²]	[Grad]
0.23	0.66	03.81	0.00	0.00	38.00	0.0	-21.14
0.99	0.85	133.12	0.00	0.00	38.00	0.0	-10.53
1.84	0.85	146.01	0.00	0.00	38.00	0.0	0.99
2.09	0.85	140.32	0.00	0.00	38.00	0.0	12.00
3.54	0.85	141.43	0.00	0.00	38.00	0.0	24.00
4.40	0.85	132.30	11.20	0.00	38.00	0.0	38.11
5.25 5.85	0.85	38.54	22.18 9.18	0.00	38.00	0.0	54.81 73.46
X _M						R*T,	R*G*
							sin(ປ)
[m]						[kNm/m]	[kNm/m]
0.23						187.33	-98.13
0.99						347.34	-103.78
1.84						352.09	10.72
2.69						340.71	135.55
3.54						331.84	251.66
4.40						358.69	378.05
5.25						409.83	482.92
5.85						203.00	195.12
Summen:						2530.83	1252.11
Einfluss von	Bauwerken						
Gewicht	Hebelarm		ý	o	ΰ	M _{rückh}	M _{abtr.}
[kN/m]	[m]		[Gr	ad]	[Grad]	[kNm/m]	[kNm/m]
4.08	-1.77		32	.01	-24.45	12.56	-7.20
Ansatz des Ei	rdwiderstands b	oeix = -0.10 m:					
Kraft E _p	Hebelarm	Wasserdruck W	/ Hebe	elarm		M _{rückh}	M _{abtr}
[kN/m]	[m]	[kN/m]	[n	n]		[kNm/m]	[kNm/m]
0.05	3.82	0.00	0	.00		0.18	0.00
Kohäsionskra [kN/m]	aft im senkr. Bere	eich	Hebe [n	elarm n]		M _{rückh.} [kNm/m]	
18.00			4	.26		76.77	
Einwirkungen Widerstände	$E_d = 1244.91$ $R_d = 2620.34$	kN kN					

 $E_d/R_d = 0.48 < 1.0$

*** Nachweis erfüllt ***

2020-021_DEF_GEO_RST_001_C

Misurazione paratia berlinese (fino a 6.23 m)

Grandezze taglio determinanti (per trave):

Coefficienti di sicurezza per carichi: per resistenze:	γ _F se γ _M =	condo Ap 1.05	oprocio 1
	Grande	ezze di ta	glio di progetto
Momento determinante	M max., =	0.28	kNm nello scavo 1
	N amm., =	33.99	kN
	a z =	6.23	m
Momento determinante	M min.₄ =	-173.76	kNm nello scavo 1
	N amm. _d =	-15.92	kN
	az =	4.62	m
Forza trasversale determina	ante V max. =	122.17	kN nello scavo 1
	M amm.₄ =	0.28	kNm
	N amm. _d =	33.99	kN
	a z =	6.23	m

*** Nota: in caso di incastro di Blum viene applicato metà del valore della forza sostitutiva C (Weissenbach).

Profilo selezionato: HEB 220, Qualità cls: \$ 275 (St 44-2)

Valori sezione trasv. del	la trave:			
Pe	eso =		71.50	kg/m
W	- v.ol		736.00	cm³
W			827.00	cm³
A	=		90.96	cm²
A	=		27.90	cm²
El	=		16.99	MNm ²
Limite di snervamento	f _{yk} =	-	275.00	MN/m ²

Verifiche secondo UNI EN 1993 (Eurocode 3):

Verifica elasto-plastica

M max. (z = 6.23)	Classe di resistenza:		1		
Sollecitazione taglio	V _{⊑d} 122.17	V _{pl,Rd} 421.88	V _{Ed} /V _{pl,Rd} 0.29	Interazione No	Ver ok Sì
Sollecitazione forze assiali	N _{ed} 33.99	N _{tRd} 2382.29	N _{ed} /N _{t,Rd} 0.01	No	Sì
Sollecitazione a flessione	M _{ed} 0.28	M _{pl,Rd} 216.60	M _{Ed} /M _{pl,Rd} 0.00	-	Sì

M min. (z = 4.62)	Classe	di resistenza:	1		
Sollecitazione taglio	V _{Ed}	V _{pl.Rd}		Interazione	Ver ok
	0.00	421.88	0.00	No	Sì
Sollecitazione forze assiali	N _{Ed}	N _{c.Rd}	N _{ed} /N _{c.Rd}		
	-15.92	2382.29	0.01	No	Sì
Sollecitazione a flessione	M _{Ed}	M _{pl.Rd}	$M_{ed}/M_{pl,Rd}$		
	-173.76	216.60	0.80	-	Sì
V max. (z = 6.23)	Classe	di resistenza:	1		
Sollecitazione taglio	V _{Ed}	V _{ol.Rd}		Interazione	Ver ok
	122.17	421.88	0.29	No	Sì
Sollecitazione forze assiali	N _{Ed}	N _{t.Rd}			
	33.99	2382.29	0.01	No	Sì
Sollecitazione a flessione	M _{Ed}	M _{ol.Bd}			
	0.28	216.60	0.00	-	Sì

Misurazione deltamponamento in legno secondo Eurocode 5

Distanza travi a = Ampiezza di appb=	1.20 m 0.96 m
, and to come of the particular of the particula	
Sistema statico:	
Scala: 1:7.5 ▽	
Δ	Δ
+	I = 0.96 m
Carico determinante co Carichi da peso proprio Fattore riduttivo g seco Carico determinante q : Grandezze taglio: Tensione ammissibile: Spessore necessario:	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Selezionato: legno	<u>d = 3.00 cm, Tipo legno C 24</u>
Verifica:	W esist., = 150.00 cm³/m esist. $\sigma_{m,d}$ = 16.03 N/mm² $\sigma_{m,d}/f_{m,d}$ = 0.87 < 1.00 *** Verifica soddisfatta ***

Riassunto

Tutte le verifiche sono soddisfatte

14 Tunnel – Sezione 2-2, 3a-3a, 3c-3c, 4-4

14.1 Descrizione

Fondazioni:

fondazione continua: b/h = 150/70 cm cls C 30/37

platea di fondazione: h = 35 cm cls C30/37

<u>*Muri:*</u> d = 60 cm cls C35/45

Solaio: solaio prefabbricato

Sugli elaborati allegati sono riportati i parametri succitati.

14.2 Modello di calcolo

14.2.1 Geometria del modello di calcolo

Di seguito è riportato il modello computazionale.

Figura 48: Modello di calcolo agli elementi finiti (S4-4 e S3c-3c)

Figura 49: carico g₂

Figura 50: carico g3 (spinta del terreno)

Figura 51: carico q

Figura 52: carico q_s

14.2.1.1 Verifiche SLU SLU: Stati limite ultimi – Azioni interne

Figura 53: Inviluppo momento flettente

Figura 54: Inviluppo degli sforzi normali

Figura 55: Inviluppo degli sforzi di taglio

14.2.1.2 Verifiche SLE

SLE: Stati limite di esercizio – Controllo dell'inflessione

Figura 56: Deformazione verticale – Combinazione quasi-permanente

15 Canale – Sezione 2-2, 3a-3a e 3c-3c

15.1 Descrizione

Il canale è costituito da una platea in c.a. (40 cm; cls C30/37). Il sostegno per il rinterro è l'appoggio per i tubi della Telecom sarà garantito con dei predalles e delle travi in acciaio (IPE 220 S275). L'appoggio per la platea è realizzato con 4 micropali verticali (ø193,7x10,0mm), che sono incastrati nel terreno sotto il fondo di scavo del tunnel. L'interrasse tra gli appoggi è ca. 7m.

Sugli elaborati allegati sono riportati i parametri succitati.

15.2 Modello di calcolo

15.2.1 Geometria del modello di calcolo

Di seguito è riportato il modello computazionale.

Figura 57: Modello di calcolo agli elementi finiti

Figura 58: carico g₂

Altezza muro ca. 2,70m ->

 $g_2 = 2,7 \text{ m} * 18 \text{ kN/m}^3 - 16 \text{ kN/m}^2 = 32,6 \text{ kN/m}^2 - > 35 \text{ kN/m}^2$

(tubo acque bianche: A = 2 m² -> Δg_2 = 2 m²* (18 kN/m³ - 10 kN/m³) = 16 kN/m²)

Figura 59: carico g3 (spinta del terreno)

g₃ = 2,7 m * 18 kN/m³ * 0,4 = 19,45 kN/m²

N = 19,45 kN/m² * 2,7 m / 2 = 26,26 kN/m -> 30 kN/m

M = 30 kN/m * 2,7 m / 3 = 27 kNm/m -> 30 kN/m

 $q = 5 \text{ KN/m}^2 + \text{tubo Telecom (10 kN/m)}$

15.2.1.1 Verifiche SLU

SLU: Stati limite ultimi – Azioni interne

Figura 61: Inviluppo momento flettente max. inferiore in direzione x-

Figura 62: Inviluppo momento flettente max. inferiore in direzione y-

Figura 63: Inviluppo momento flettente max. superiore in direzione x+

Figura 64: Inviluppo momento flettente max. superiore in direzione y+

SLU: Stati limite ultimi – Disposizione armatura

Figura 65: Inviluppo armatura inferiore, 1a posa

Figura 66: Inviluppo armatura inferiore, 2a posa

Figura 68: Inviluppo armatura superiore, 2a posa

Figura 69: Inviluppo degli sforzi normali nei pali

<u>Check of steel profile on simple compression: R0193.7X10</u> <u>UNI EN 1993-1-1</u>

<u>Loading:</u>

Axial force

 $N_{Ed} = 600 \text{ kN}$

Cross section parameters:

	Cross section area	$A = 5770 \text{ mm}^2$	
d = 0.194	Cross section class	1	
	Steel material	S 355	
	The greatest thickness c	of the cross section	t _{max} = 10 mm

Bearing capacity calculation:

Compression bearing capacity $N_{c,Rd} = \frac{A \cdot f_y}{\gamma_{M0}} = \frac{5.77 \cdot 10^{-3} \cdot 355 \cdot 10^6}{1.05} = 1951 \text{ kN}$

<u>Check:</u>

 $s = \frac{\overline{N_{Ed}}}{N_{c,Rd}} = \frac{600 \text{ kN}}{1951 \text{ kN}} = 0.308 < 1$ => Is SUFFICIENT

כורו	ŀ
	E

holzner. bertagnolli ^{engineering} 2020-021_DEF_GEO_RST_001_C

Capacità portante a compressione

	Jessione								
Coefficienti di riferiment	to								
Tipologia pali:		Pali trivellati/Pfähle	mit Hüllrohr		•				
Numero prove secondo T	Tab. 6.4.IV:	≥ 10			-	Coefficiente	e impiegato nella	a seguente r	elazione: 🛃 🔻
Coefficienti parziali per l	e resistenze ca	ratteristiche	A1 C1 🔻	A2 C1 🔻					
			(STR)	(GEO)		Coefficiente	e di correlazione	per prove d	i carico statico Tab. 6.4.III
Base		γ _b	1,00	1,35					ξ ₁
Totale*	1	γ _s γ _s	1,00	1,15					ξ ₂
Laterale in trazione		γ _{st}	1,00	1,30					
		L			1	Coefficiente	e di correlazione	per verticali	i indagate Tab. 6.4.IV
									ξ ₃ 1,40
									ξ ₄ 1,21
						Coefficiente	e di correlazione	ner prove d	i carico dinamico Tab. 6.4 V
								per prote a	ξ ₅
									ξ ₆
						Coefficiente	e di correlazione		
l						Valore defir	hito dall'utente		ξu/b
Geometria palo									
Diametro palo:		<i>d</i> i –	0.24	m					
Lunghezza palo:		ے م	6.50	m					
			-,						
a									
Stratigrafia terreno									
l I	Profondità	γ	φ	с' _к	Cuk	q₊*	1	±0.00	
	6	[kN/m³]	[°]	[kN/m²]	[kN/m²]	[kN/m²]		▼ 418	naiaiaiaiaiaiaiaiaiaia
1° strato	6,50					170,00			
2° strato							-		1°
3° strato								A	
4 strato		II				*) Valore definit	to dall'utente	•	2°
Fattore incrementale sec	ondo Baustama	ante - Doix e Oste	rmyer					▼	
	Tipologi	a terreno	α	α,*	1				28
<u>1° strato</u>	Definito dall'uten	te/Benutzerdefini 🔻		1,25				0	3
2° strato								v	
4° strato		•							4°
				*) Valore definit	o dall'utente			D	
Carichi agenti									
#BEZOG!								E _d =	600,00 KN 600,00 KN
Carico limite palo									
Carico limito por registor	a latoralo								
carico minite per resisten					(STR)	(GEO)			(STR) (GEO)
] [tan (φ)	k	I _{calc}	RI	q _k	q _k]		Q _{Sk} Q _{Sk}
			[m]	[m²]	[kN/m²]	[kN/m²]	-		[kN] [kN]
1° strato			6,50	4,90	212,50	212,50	-		1041,44 1041,44
2 strato							-		
4° strato									
							-		1041,44 1041,44
Carico limite di punta							-	1	
Profondità						Q _{bk} *			
6 50						2500.00	141.37		141.37 141.37
0,00							*) Valore definito da	ll'utente	
Resistenza di progetto la	terale							R _d =	860,69 748,43
Resistenza di progetto al	la base							R _d =	116,84 86,55
Resistenza di progetto								R _{d tot} =	977,53 kN 834,97 kN
Fred the								d, tot	,
Grado d'utilizzo								$\eta = E_d / R_d$	61% 72%
Verifica a carico limite								R.>F.	Verifica OK Verifica OK
- State a conco minte								••d — ►d	. crimed on Vermed On

15.2.1.2 Verifiche SLE

SLE: Stati limite di esercizio – Controllo dell'inflessione

Figura 70: Deformazione solaio verticale – Combinazione quasi-permanente

15.3 Trave in acciaio e predalles

predalles:

e = (2,7+2,2)/2 m * 18 kN/m³ * 0,4 = 17,46 kN/m²

iv = 0,50 m -> q_k = 17,46 kN/m² * 0,5 m = 8,82 kN/m -> q_d = 8,82 kN/m * 1,3 = 11,47 kN/m

l = 2,00 m -> M_d = 11,50 x 2^2 / 8 = 5,75 kNm; V_d = 11,50 * 2/2 = 11,50 kN

 $F_{d} = 5,75 \ / \ 0,165 = 34,85 \ kN \ / \ 39,1 \ kN/cm^{2} = 0,89 \ cm^{2} < A_{Stahl} = 2,0 \ cm^{2}$

Verifica della resistenza a taglio

Sollecitazioni					
	V_{Ed}	11,5 kN			
	N _{Ed}	0,0 kN			
					
Materiale					
Classe calcestruzzo		C25/30 🔻			
Resistenza calcestruzzo	f _{ck}	25,0 N/mm²			
	f_{cd}	14,2 N/mm²			
r					
Geometria					
Altezza sezione	h	5.0 cm			
Larghezza sezione	b	50,0 cm			
Altezza utile	d	4,5 cm			
	A _{sl}	2,3 cm ²			
Momento flettente adimensionale	$\mu_{d,calc}$				
Braccio della coppia interna	Z	4,1 cm	z ≈ 0,9*d O.K.		
	C _{Rd,c}	0,12			
	k	2,00			
	rl	0,0102			
	σ_{cp}	0 N/mm²			
	k ₁	0,15			
	$\nu_{\rm min}$	0,49 N/mm²			
	n	0,63 N/mm²			
Verifica					
Vernea					
In corrispondenza dell'appoggio	V _{rd max}	100,4 kN			
	10,110				
	V _{rd,c} =	15,9 kN	>	V _{ed} =	11,5 kN

trave in acciaio:

e = 2,7 m * 18 kN/m³ * 0,4 = 19,45 kN/m²

q = 10 kN/m (tubi Telecom)

i = 2 m

 $M_d = (19,45 \text{ kN/m}^2 * 2,70^2 \text{ m}^2 / 6 * 1,3 + 10 \text{ kN/m} * 0,3 \text{ m} * 1,5) \times 2 \text{ m} = 70,50 \text{ kNm}$

 V_d = (19,45 kN/m² * 2,70 m / 2 *1,3) * 2 m = 68,30 kN

Bending and shear check: IPE220 UNI EN 1993-1-1

Input values:

Bending moment	$M_{Ed} = 70.5 \text{ kNm}$
Shear force	V _{Ed} = 68.3 kN
Steel material	S 275

Cross section parameters:

\neg	—	Cross section area	A = 3340 mm ²
	h = 220	Shear area	$A_{vz} = 2064 \text{ mm}^2$
		Cross section bending	class 1
b = 1	110	Cross section modulus	y axis
			$W_{el,v} = 252000 \text{ mm}^3$

 $W_{pl,y} = 285000 \text{ mm}^3$

Cross section modulus z axis

~

The greatest thickness of the cross section t_{max} = 9.2 mm

Design plastic shear resistance
$$V_{pl,Rd} = \frac{A_{VZ} \cdot f_y}{V_{M0} \cdot \sqrt{3}} = \frac{2064 \cdot 275}{1.05 \cdot \sqrt{3}} = 312 \text{ kN}$$

Design moment resistance reduced due to the shear, $V_{Ed} \le 1/2V_{pl,Rd}$

$$V_{Ed} = 68.3 \text{ kN} < \frac{1}{2} V_{pl,Rd} = 156 \text{ kN} => Shear effect can be neglected$$

Cross section unity check

$$M_{Rd,y} = \frac{W_{pl,y} \cdot f_y}{Y_{M0}} = \frac{285 \cdot 10^{-6} \cdot 275 \cdot 10^{6}}{1.05} = 74.6 \text{ kNm}$$

<u>Check</u>

MEd	70.5 kNm - 0 044 < 1	= > Ic SUFFICIENT
^S M _{Rd,v}	74.6 kNm - 0.944 < 1	-> 13 30111C1ENT

	-		
1	Date	da in	COLLO
	Dau	ua II	13CI II C

The second se
HIT-HY 200-A + HIT-V (8.8) M16
50
il riempimento dello spazio aulare tra piastra e ancorante.
h _{atact} = 250 mm (h _{ef limit} = - mm)
8.8
ETA 11/0493
30/08/2019 -
Valutazione ingegneristica SOFA BOND dopo la campagna di test ETAG BOND
e _b = 0 mm (Senza distanziamento); t = 9 mm
l _x x l _y x t = 110 mm x 1.480 mm x 9 mm; (Spessore della piastra raccomandato: non calcolato
nessun profilo
non fessurato calcestruzzo, C30/37, f _{coute} = 37,00 N/mm ² ; h = 400 mm, Temp. Breve/Lungo: 40/24 °C
Foro eseguito con perforatore, Condizioni di installazione: asciutto
nessuna armatura o interasse tra le armature >= 150 mm (qualunque Ø) o >= 100 mm (Ø <= 10 mm)
senza armatura di bordo longitudinale
L'armatura per il controllo della fessurazione deve essere presente in accordo a quanto previsto da EOTA TR 029, paragrafo 5.2.2.6.

^R - Il calcolo dell'ancoraggio presuppone la presenza di una piastra di ancoraggio rigida.

Geometria [mm] & Carichi [kN, kNm]

		Valori di	Valori di calcolo [kN]		
Carico	Prova	Carico	Resistenza	β _N / β _V [%]	Stato
Trazione	Rottura dell'acciaio	27,439	83,733	33 / -	OK
Taglio	Rottura del bordo del calcestruzzo ir direzione y-	70,000	101,539	- / 69	OK
Carico	βΝ	βv	a	Utilizzo _{BN,V} [%]	Stato
Carichi combinati	i a trazione e taglio 0,328	0,689	1,5	76	OK

16 Canale – Sezione 5-5

16.1 Descrizione

Il canale è costituito da un solaio in c.a. (60cm; cls C35/45) con una trave (parete) spessa 60 cm nella parte inferiore e 35cm nella parte superiore. L'appoggio per il solaio è realizzato con micropali in acciaio S355 (ø193,7x12,5 mm ogni secondo palo ø300; i = 250 mm, Lg.: 13,0m) che si intersecano e lavorano come pilastro incastrato nel terreno per la fase provvisoria e con pilastri in c.a. per la fase finale.

Sugli elaborati allegati sono riportati i parametri succitati.

16.2 Modello di calcolo (fase provvisoria)

16.2.1 Geometria del modello di calcolo

Di seguito è riportato il modello computazionale per la fase provvisoria.

Figura 71: Modello di calcolo agli elementi finiti

 $g_2 = 2,7 \text{ m}^*18 \text{ kN/m}^3 - 16 \text{ kN/m}^2 = 32,6 \text{ kN/m}^2 - > 40 \text{ kN/m}^2$

(tubo acque bianche: A = 2 m² -> Δg_2 = 2 m²* (18 kN/m³ - 10 kN/m³) = 16 kN/m²)

Figura 73: carico g3 (spinta del terreno)

 $g_3 = 2,7 \text{ m} * 18 \text{ kN/m}^3 * 0,4 = 19,45 \text{ kN/m}^2 \rightarrow 20 \text{ kN/m}^2$

 $q = 5 \text{ KN/m}^2 + \text{tubo Telecom (10 kN/m)}$

16.2.1.1 Verifiche SLU

Figura 75: Inviluppo degli sforzi normali nei pilastri

Figura 76: Grado di sfruttamento agli SLU

EC-EN 1993 Stahlnachweis GZT

Lineare Analyse Kombination: GZT/STR Koordinatensystem: Hauptsystem Extremwerte 1D: Global Auswahl: Alle

Normnachweis EN 1993-1-1

Nationaler Anhang: Italienischer NA UNI-EN

Bauteil B139 0,000 / 7,500 m RO193.7X12.5 S 355 GZT/STR 0,66 -

Kombinationsvorschrift GZT/STR / 1.30*g1 + 1.30*g2 + 1.30*g3 + 1.50*q1

Teilsicherheitsbeiwerte	
γmo für die Beanspruchbarkeit der Querschnitte	1,05
γ _{M1} für die Beanspruchbarkeit bei Stabilitätsversagen	1,05
YM2 für die Beanspruchbarkeit der wirksamen Querschnitte	1,25

-					
	1.1	E		E	
	141	сı	19	r I	

Material			
Streckgrenze	fy	355,0	N/mm ²
Zugfestigkeit	fu	490,0	N/mm ²
Herstellung		Gewalzt	

...::QUERSCHNITTSNACHWEIS:....

Der kritische Nachweis ist an Position 0,000 m

Schnittgrößen		Ermittelt	[Dim]
Längskraft	N _{Ed}	-974,40	kN
Querkraft	V _{y,Ed}	-0,10	kN
Querkraft	$V_{z,Ed}$	0,01	kN
Torsion	T _{Ed}	0,15	kNm
Biegemoment	M _{y,Ed}	-0,05	kNm
Biegemoment	M _{z,Ed}	0,75	kNm

Klassifizierung für den Querschnittsnachweis

Klassifizierung gemäß EN 1993-1-1 Artikel 5.5.2

Klassifizierung von Rohrprofilen gemäß EN 1993-1-1 Tabelle 5.2 Blatt 3

d [mm]	t [mm]	d/t [-]	Klasse 1 Grenze [-]	Klasse 2 Grenze [-]	Klasse 3 Grenze [-]	Klasse
194	13	15,5	33,1	46,3	59,6	1

Der Querschnitt ist als Klasse 1 klassifiziert

Nachweis bei Druckbeanspruchung

Gemäß EN 1993-1-1 §§6.2.4 und Formel (6.9)

Querschnittsfläche	А	7,1200e-03	m ²
Druckwiderstand	N _{c,Rd}	2407,24	kN
Einheitsnachweis		0,40	-

Nachweis bei Biegebeanspruchung My

Gemäß EN 1993-1-1 §6.2.5 und Formel (6.12),(6.13)

Plastischer Querschnittsmodul	W _{pl,y}	4,1042e-04	m ³
Plastisches Biegemoment	M _{pl,y,Rd}	138,76	kNm
Einheitsnachweis		0,00	-

Nachweis bei Biegebeanspruchung Mz

Gemäß EN 1993-1-1 §6.2.5 und Formel (6.12),(6.13)

Plastischer Querschnittsmodul	W _{pl,z}	4,1042e-04	m ³
Plastisches Biegemoment	M _{pl,z,Rd}	138,76	kNm
Einheitsnachweis		0,01	-

Nachweis bei Querkraftbeanspruchung $V_{\boldsymbol{\gamma}}$

Gemäß EN 1993-1-1 §6.2.6 und Formel (6.17)

Korrekturbeiwert für Schub	η	1,20	
Schubfläche	Av	4,5327e-03	m ²
Plastischer Querkraftwiderstand	V _{pl,y,Rd}	884,79	kN
gegen V _y			
Einheitsnachweis		0,00	-

Nachweis bei Querkraftbeanspruchung Vz

Gemäß EN 1993-1-1 §6.2.6 und Formel (6.17)

Korrekturbeiwert für Schub	η	1,20	
Schubfläche	Av	4,5327e-03	m ²
Plastischer Querkraftwiderstand	V _{pl,z,Rd}	884,79	kN
gegen Vz			
Einheitsnachweis		0,00	-

Nachweis bei Torsionbeanspruchung

Gemäß EN 1993-1-1 §6.2.7 und Formel (6.23)

Fasernummer	Faser	1	
Gesamttorsionsmoment	TEd	0,2	N/mm ²
Elastischer Schubwiderstand	TRd	195,2	N/mm ²
Einheitsnachweis		0,00	-

Bemerkung: Der Nachweiswert für Torsion ist kleiner als der Grenzwert 0,05. Deswegen wird die Torsion als nicht relevant betrachtet und wird in den kombinierten Nachweisen ignoriert.

Nachweis der kombinierten Biege-, Normalkraft- und Querkraftbeanspruchung

Gemäß EN 1993-1-1 §6.2.9.1 und Formel (6.31)

Resultierendes Biegemoment	Mresultant	0,75	kNm
Resultierende Querkraft	Vresultant	0,10	kN
Plastisches Momentenwiderstand	M _{N,Rd}	108,94	kNm
reduziert durch N _{Ed}			
Einheitsnachweis		0,01	-

Bemerkung: Für den Rohrquerschnitt wurde die resultierende Schnittkraft verwendet. **Bemerkung:** Der Einfluss der Querkräfte auf den Biegewiderstand wird vernachlässigt, weil diese kleiner als der halbe plastische Schubwiderstand sind.

Der Querschnittsnachweis für das Teil wurde erbracht.

...::STABILITÄTSNACHWEIS::...

Klassifizierung für den Biegeknicknachweis

Maßgebender Schnitt für die Stabilitätsklassifizierung: 0,000 m Klassifizierung gemäß EN 1993-1-1 Artikel 5.5.2 Klassifizierung von Rohrprofilen gemäß EN 1993-1-1 Tabelle 5.2 Blatt 3

d [mm]	t [mm]	d/t [-]	Klasse 1 Grenze [-]	Klasse 2 Grenze [-]	Klasse 3 Grenze [-]	Klasse
194	13	15,5	33,1	46,3	59,6	1

Der Querschnitt ist als Klasse 1 klassifiziert

Biegeknicknachweis

Gemäß EN 1993-1-1 §6.3.1.1 und Formel (6.46)

Knickparameter		уу	ZZ	
Verschieblichkeitstyp		unverschieblich	unverschieblich	
Systemlänge	L	7,500	7,500	m
Knickbeiwert	k	0,70	0,70	
Knicklänge	I _{cr}	5,250	5,250	m
Ideale Verzweigungslast	Ncr	2206,28	2206,28	kN
Schlankheit	λ	81,78	81,78	

Knickparameter		уу	ZZ	
Relative Schlankheit	λ_{rel}	1,07	1,07	
Grenzschlankheit	$\lambda_{rel,0}$	0,20	0,20	
Knickfigur		а	а	
Imperfektion	Α	0,21	0,21	
Reduktionsbeiwert	Х	0,62	0,62	
Knickwiderstand	N _{b,Rd}	1483,96	1483,96	kN

Kontrolle des Bieg	eknicke	ens	
Querschnittsfläche	Α	7,1200e-03	m ²
Knickwiderstand	N _{b,Rd}	1483,96	kN
Einheitsnachweis		0,66	-

Biegedrillknicknachweis

Gemäß EN 1993-1-1 §6.3.1.1 und Formel (6.46)

Bemerkung: Der Querschnitt bezieht sich auf ein kreisförmiges Hohlprofil, das auf Biegedrillknickeinflüsse nicht empfindlich ist.

Biegedrillknicknachweis

Gemäß EN 1993-1-1 §6.3.2.1

Bemerkung: Der Querschnitt bezieht sich auf ein kreisförmiges Hohlprofil, das auf Biegedrillknickeinflüsse nicht empfindlich ist.

Nachweis der Biege- und Drucknormalkraftspannungen

Gemäß EN 1993-1-1 §§6.3.3 und Formel (6.61),(6.62)

Parameter für den Nachweis der	r Biege	- und	
Drucknormalkraftspannungen			
Interaktionsverfahren		Alternatives Verfahren 1	
Querschnittsfläche	А	7,1200e-03	m ²
Plastischer Querschnittsmodul	W _{pl,y}	4,1042e-04	m ³
Plastischer Querschnittsmodul	W _{pl,z}	4,1042e-04	m ³
Bemessungsdruckkraft	N _{Ed}	974,40	kN
Bemessungsbiegemoment	M _{y,Ed}	-0,05	kNm
(maximal)			
Bemessungsbiegemoment	$M_{z,Ed}$	0,75	kNm
(maximal)			
Charakteristischer Widerstand bei	N _{Rk}	2527,60	kN
Druckbeanspruchung			
Charakteristischer	M _{y,Rk}	145,70	kNm
Momentwiderstand			
Charakteristischer	M _{z,Rk}	145,70	kNm
Momentwiderstand			
Reduktionsbeiwert	Ху	0,62	
Reduktionsbeiwert	Χz	0,62	
Reduktionsbeiwert	XLT	1,00	
Interaktionsbeiwert	k _{yy}	0,94	
Interaktionsbeiwert	k _{yz}	0,60	
Interaktionsbeiwert	k _{zy}	0,60	
Interaktionsbeiwert	k _{zz}	0,94	

Maximales Moment $M_{y,Ed}$ ist von Träger B139 Position 0,000 m abgeleitet. Maximales Moment $M_{z,Ed}$ ist von Träger B139 Position 0,000 m abgeleitet.

Parameter für Interaktionsverfa	ahren 1		
Ideale Verzweigungslast	N _{cr,y}	2206,28	kN
Ideale Verzweigungslast	N _{cr,z}	2206,28	kN
Elastische kritische Last	N _{cr,T}	575076,92	kN
Plastischer Querschnittsmodul	W _{pl,y}	4,1042e-04	m ³
Elastischer Querschnittsmodul	W _{el,y}	3,0300e-04	m ³
Plastischer Querschnittsmodul	W _{pl,z}	4,1042e-04	m ³
Elastischer Querschnittsmodul	W _{el,z}	3,0300e-04	m ³
Flächenträgheitsmoment	Iy	2,9340e-05	m ⁴
Flächenträgheitsmoment	Iz	2,9340e-05	m ⁴
Torsionskonstante	It	5,8680e-05	m ⁴
Verfahren für äquivalenten		Tabelle A.2 Linie 1 (linear)	
Momentbeiwert C _{my,0}			
Verhältnis der Endmomente	Ψy	0,00	
Äquivalenter Momentbeiwert	C _{my,0}	0,74	
Verfahren für äquivalenten		Tabelle A.2 Linie 1 (linear)	
Momentbeiwert C _{mz,0}			
Verhältnis der Endmomente	Ψz	0.00	

Parameter für Interaktionsverf	fahren 1		
Äquivalenter Momentbeiwert	C _{mz,0}	0,74	
Beiwert	μ	0,77	
Beiwert	μz	0,77	
Beiwert	εγ	0,00	
Beiwert	a∟⊤	0,00	
Kritisches Moment für konstantes	M _{cr,0}	2263,58	kNm
Biegen			
Relative Schlankheit	$\lambda_{rel,0}$	0,25	
Relative Schlankheitsgrenze	$\lambda_{rel,0,lim}$	0,23	
Äquivalenter Momentbeiwert	Cmy	0,74	
Äquivalenter Momentbeiwert	C _{mz}	0,74	
Äquivalenter Momentbeiwert	C _{mLT}	1,00	
Beiwert	b LT	0,00	
Beiwert	CLT	0,00	
Beiwert	d∟⊤	0,00	
Beiwert	e∟⊤	0,00	
Beiwert	Wy	1,35	
Beiwert	Wz	1,35	
Beiwert	n _{pl}	0,40	
Maximale relative Schlankheit	$\lambda_{rel,max}$	1,07	
Beiwert	Cyy	1,08	
Beiwert	Cyz	1,01	
Beiwert	Czy	1,01	
Beiwert	C77	1.08	

Einheitsnachweis (6.61) = 0,66 + 0,00 + 0,00 = 0,66 - Einheitsnachweis (6.62) = 0,66 + 0,00 + 0,01 = 0,66 -

Der Stabilitätsnachweis wurde für dieses Teil erbracht

7x ø300 mm:

Capacità portante a compressione

Coefficienti di riferimento	
Tipologia pali: Pali trivellati/Pfähle mit Hüllrohr	
Numero prove secondo Tab. 6.4.IV:	Coefficiente implegato nella seguente relazione:
Coefficienți parziali per le resistenze caratteristiche	
(STR) (GEO)	Coefficiente di correlazione per prove di carico statico Tab. 6.4.III
Base γ _b 1,00 1,35	ξ1
Laterale in compressione Y _s 1,00 1,15	ξ2
Totale* <u>γ_t</u> <u>1,00</u> <u>1,30</u>	
Laterale in trazione γ_{st} 1,00 1,25	
	Coefficiente di correlazione per verticali indagate Tab. 6.4.IV
	<u>ξ</u> 1,40 ε. 1,21
	<u>54</u>
	Coefficiente di correlazione per prove di carico dinamico Tab. 6.4.V
	ξ ₅
	ξ ₆
	Coefficiente di correlazione
	Valore definito dall'utente
I	
Geometria palo	
Diametro nalo:	0.23 m ²
Lunghezza palo: 0 3,00 m A	0,25 111
Stratigrafia terreno	
Profondità y o c'o c	a * +0.00
[m] $[kN/m^3]$ [°] $[kN/m^2]$ $[kN/m^2]$	
1° strato 5.40	170.00
2° strato	1°
3° strato	
4° strato	Ŷ
	*) Valore definito dall'utente B 2°
Fattore incrementale secondo Baustamante - Doix e Ostermyer	•
1° strato Definito dall'utente/Benutzerdefini ▼ 1.25	3°
2° strato	С
3° strato 🔽	▼
4° strato 💌	4°
*) Valore definito dall'utente	▼
Carichi agenti	
	E _d = 1900,00 kN 1900,00 kN
Carica limita nala	
Carico limite per resistenza laterale	
(STR)	(GEO) (STR) (GEO)
tan (φ) k l _{calc} RI q _k	q _k Q _{Sk} Q _{Sk}
[m] [m ²] [kN/m ²]	[kN/m ²] [kN] [kN]
<u>1° strato</u> <u>5,40</u> <u>19,44</u> <u>212,50</u>	4131,00 4131,00
<u>2 Strato</u>	
4º strato	
	4131,00 4131,00
Carico limite di punta	
Profondità	q _{bk} * Q _b Q _{bk} Q _{bk}
[m]	[kN/m ²] [kN] [kN]
5,40	2000,00 460,00 460,00 460,00
	-) valore dennico dan utente
Resistenza di progetto laterale	R ₄ = 3414.05 2968.74
Resistenza di progetto alla base	$R_d = 380,17$ 281,60
Resistenza di progetto	R _{d.tot} = 3794,21 kN 3250,34 kN
	$\eta = t_d / K_d$ 50% 58%
Verifica a carico limite	R _d ≥ E _d Verifica OK Verifica OK

9x ø300 mm:

Capacità portante a compressione

Tipologia pali: Pali trivellati/Pfăhle mit Hüllrohr V	
Tipologia pali: Pali trivellati/Pfähle mit Hüllrohr	
Coefficienti parziali per le resistenze caratteristiche A1 C1 🔻 A2 C1 💌	
(STR) (GEO)	Coefficiente di correlazione per prove di carico statico Tab. 6.4.III
Base <u>γ_b</u> <u>1,00</u> <u>1,35</u>	ξ1
Laterale in compressione γ_s 1,00 1,15	ξ ₂
$\frac{\gamma_t}{1,00} = \frac{1,30}{1,30}$	
	Coefficiente di correlazione per verticali indagate Tab. 6.4.IV
	ξ ₃ 1,40
	ξ ₄ 1,21
	Coefficiente di correlazione per prove di carico dinamico Tab. 6.4.V
	ξ ₆
	Coefficiente di correlazione
	Valore definito dall'utente $\xi_{w/k}$
Geometria palo	
Diametra palas	0.20
Diametro paio: $U 4,60 \text{ m}$ A	0,30 m ²
Stratigrafia terreno	
	- * +0.00
Profondita γ ϕ C_k C_{uk} [m] [kN/m ³] [°] [kN/m ²] [kN/m ²]	
1° strato 6,40	170,00
2° strato	1°
3° strato	A
4° strato	¥
Fattore incrementale secondo Baustamante - Doix e Ostermver	B 2'
Tipologia terreno $\alpha_s = \alpha_s^*$	
1° strato Definito dall'utente/ Benutzerdefini ▼ 1,25	3°
2° strato 💌	C
3° strato ▼	48
	D
*) valore definito dall'utente	
") valore dennito dali utente	•
") valore definito dali utente	·
") valore definito dali utente Carichi agenti	·
") valore definito dali utente	
⁷) valore definito dali utente Carichi agenti #BEZUG!	E _d = 3500,00 kN 3500,00 kN
") valore dennito dali utente Carichi agenti #BEZUG!	E _d = 3500,00 kN 3500,00 kN
") valore dennito dali utente Carichi agenti #BEZUG! Carico limite palo	E _d = 3500,00 kN 3500,00 kN
") valore dennito dali utente	E _d = 3500,00 kN 3500,00 kN
T valore dennito dali utente Carichi agenti #BEZUG! Carico limite palo Carico limite per resistenza laterale (STP)	(GEQ)
Carichi agenti #BEZUG! Carico limite palo Carico limite per resistenza laterale (STR) tan (φ)	(GEO) (STR) (GEO)
Carichi agenti #BEZUG! Carico limite palo Carico limite per resistenza laterale (STR) tan (φ) k [m] [m²] [kN/m²]	E _d = 3500,00 kN 3500,00 kN (GEO) (STR) (GEO) Q _k Q _{5k} Q _{5k} [kN] [kN] [kN]
Carichi agenti #BEZUG! Carico limite palo Carico limite per resistenza laterale (STR) tan (φ) k [m] [m²] 1° strato 6,40 29,44	E _d = 3500,00 kN 3500,00 kN (GEO) (STR) (GEO) Q _k Q _{5k} Q _{5k} [kN/m ²] [kN] [kN] 212,50 6256,00 6256,00
' valore dennito dali utente ' valore dennito dali utente Carichi agenti #BEZUG!	E _d = 3500,00 kN 3500,00 kN (GEO) (STR) (GEO) Q _k Q _{Sk} Q _{Sk} [kN/m ²] [kN] [kN] 212,50
' valore dennito dali utente ' valore dennito dali utente Caricolimite palo Carico limite palo Carico limite palo Carico limite palo (STR)	E _d = 3500,00 kN 3500,00 kN (GEO) (STR) (GEO) Q _k Q _{sk} Q _{sk} [kN/m ²] 6256,00 6256,00
' Valore dennito dali utente Caricoli agenti #BEZUG! Carico limite palo (STR) (STR)	E _d = 3500,00 kN 3500,00 kN (GEO) (STR) (GEO) [kN/m²] Q _{Sk} Q _{Sk} 212,50 6256,00 6256,00 -
' Valore dennito dali utente Caricolimite palo Carico limite palo (STR)	E _d = 3500,00 kN 3500,00 kN (GEO) (STR) (GEO) [kN/m²] Q _{Sk} Q _{Sk} 212,50 6256,00 6256,00
' Valore dennito dali utente Caricolimite palo Carico limite palo Carico limite per resistenza laterale (STR)	E _d = 3500,00 kN 3500,00 kN (GEO) (STR) (GEO) [kN/m²] Q _{5k} Q _{5k} 212,50 GE56,00 6256,00 6256,00 Qbk Qbk Qbk
' valore dennito dali utente Carichi agenti #BEZUG! Carico limite palo Carico limite per resistenza laterale (STR)	$\begin{array}{c c} \hline E_{d} = & 3500,00 \text{ kN} & 3500,00 \text{ kN} \\ \hline \hline E_{d} = & 3500,00 \text{ kN} & 3500,00 \text{ kN} \\ \hline \hline \\ \hline $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} \hline E_{d} = & 3500,00 \text{ kN} & 3500,00 \text{ kN} \\ \hline E_{d} = & 3500,00 \text{ kN} & 3500,00 \text{ kN} \\ \hline \\ $
' valore dennito dali utente Caricolimite palo Carico limite palo Carico limite palo Carico limite per resistenza laterale (STR) 1° strato 1° strato	$\begin{array}{c c} \hline E_{d} = & 3500,00 \ kN & 3500,00 \ kN \\ \hline E_{d} = & 3500,00 \ kN & 3500,00 \ kN \\ \hline \\ $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} \hline E_{d} = & 3500,00 \text{ kN} & 3500,00 \text{ kN} \\ \hline E_{d} = & 3500,00 \text{ kN} & 3500,00 \text{ kN} \\ \hline \\ $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} \hline E_{d} = & 3500,00 \ \text{kN} & 3500,00 \ \text{kN} \\ \hline E_{d} = & 3500,00 \ \text{kN} & 3500,00 \ \text{kN} \\ \hline \\ $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} \hline E_{d} = & 3500,00 \text{ kN} & 3500,00 \text{ kN} \\ \hline E_{d} = & 3500,00 \text{ kN} & 3500,00 \text{ kN} \\ \hline \\ $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} \hline E_{d} = & 3500,00 \ \text{kN} & 3500,00 \ \text{kN} \\ \hline E_{d} = & 3500,00 \ \text{kN} & 3500,00 \ \text{kN} \\ \hline \\ $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} \hline E_{d} = & 3500,00 \text{ kN} & 3500,00 \text{ kN} \\ \hline E_{d} = & 3500,00 \text{ kN} & 3500,00 \text{ kN} \\ \hline \\ $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

16.2.1.2 Verifiche SLE

SLE: Stati limite di esercizio – Controllo dell'inflessione

Figura 77: Deformazione solaio verticale – Combinazione quasi-permanente

Figura 78: Deformazione solaio orizzontale – Combinazione quasi-permanente

16.3 Modello di calcolo (fase finale)

16.3.1 Geometria del modello di calcolo

Di seguito è riportato il modello computazionale per la fase finale

Figura 80: carico g₂

 $g_2 = 4,6 \text{ m}^* 18 \text{ kN/m}^3 - 16 \text{ kN/m}^2 = 66,8 \text{ kN/m}^2 - > 70 \text{ kN/m}^2$

(tubo acque bianche: A = 2 m² -> Δg_2 = 2 m²* (18 kN/m³ - 10 kN/m³) = 16 kN/m²)

g₂ = [40 kN/m² (carico sulla strada) + ca. 20 KN/m² (peso proprio solaio prefabbricato)] * 13,5 m / 2 =

= 405 kN/m -> 410 kN/m

Figura 81: carico g3 (spinta del terreno)

 $g_3 = 2,7 \text{ m} * 18 \text{ kN/m}^3 * 0,4 = 19,45 \text{ kN/m}^2 \rightarrow 20 \text{ kN/m}^2$

 $q = 5 \text{ KN/m}^2$

q = [20 kN/m² (carico sulla strada)] * 13,5 m / 2 = 135 kN/m + tubo Telecom (10 kN/m) -> 150 kN/m

16.3.1.1 Verifiche SLU

Figura 83: Inviluppo momento flettente max. inferiore in direzione x-

Figura 84: Inviluppo momento flettente max. inferiore in direzione y-

Figura 85: Inviluppo momento flettente max. superiore in direzione x+

Figura 86: Inviluppo momento flettente max. superiore in direzione y+

Figura 87: Inviluppo degli sforzi normali sugli appoggi

Figura 88: Inviluppo momento flettente trave

Figura 89: Inviluppo degli sforzi normali trave

Figura 90: Inviluppo degli sforzi di taglio trave

16.3.1.2 Verifiche SLE

SLE: Stati limite di esercizio – Controllo dell'inflessione

Figura 91: Deformazione solaio verticale – Combinazione quasi-permanente

Figura 92: Deformazione solaio orizzontale – Combinazione quasi-permanente

17 Pali secanti – Sezione 6

17.1 Descrizione

Per contrastare la spinta del terreno e la spinta derivante dal sovraccarico dell'edificio è prevista la realizzazione di setti costituiti da pali secanti di diametro ø75cm con un interrasse di ø55cm. I setti hanno un'interrasse di 5,50 m. Tra i setti è prevista la realizzazione di una parete chiodata (d=15 cm) con chiodi di lunghezza 3m e un interrasse orizzontale di 1,40 m.

La berlinese è costituita da micropali verticali e pali inclinati con diametro pari a 193,7(v) e 168,3 (i) mm. L'inclinazione degli elementi inclinati è pari a 15°. Lo spessore delle sezioni tubolari è 10 (v) e 6,3 (i) mm in acciaio S 355. I micropali sono collegati con una trave di ripartizione. La trave di coronamento sarà eseguita in c.a.

Sugli elaborati allegati sono riportati i parametri succitati.

17.2 Modello di calcolo

17.2.1 Geometria del modello di calcolo

Di seguito è riportato il modello computazionale della sezione più sfavorevole (Plaxis 3D)

Per la modellazione del terreno si utilizza l'approccio HSS. I micropali, i muri e la parete chiodata sono stati modellati con elementi "plate". I pali secanti sono stati modellati come "Soil" in calcestruzzo.
17.3 Verifiche

Si procede ora con le verifiche a stato limite ultimo, delle sezioni e di stabilità globale, e a stato limite di esercizio.

17.3.1 Stato limite ultimo – Sezioni / Elementi

Le sollecitazioni agenti sul sistema sono riportate nella tabella seguente, i valori sono caratteristici, non fattorizzati.

17.3.1.1 Verifica micropali verticali

Micropalo verticale 193,7x10 S355

Sollecitazioni caratteristiche palo verticale				SLE	SLU	
Sollecit	Sollecitazione Interasse		~	Sollecitazione / palo	Sollecitazione / palo	
[U/	[U/m]		Ϋ́Ε	[U/m]	[U/m]	
N	-105	0,5	1,35	-52,5	-70,9	
Q	34	0,5	1,35	17,0	23,0	
М	26	0,5	1,35	13,0	17,6	

Bending and shear check: RO193.7X10 UNI EN 1993-1-1

Input values:

Bending moment	M_{Ed} = 20 kNm
Shear force	$V_{Ed} = 25 \text{ kN}$
Steel material	S 355

holzner bertagnolli

Cross section parameters:

 $A = 5770 \text{ mm}^2$ Cross section area $A_{vz} = 3674 \text{ mm}^2$ Shear area Cross section bending class 1 Cross section modulus y axis $W_{el,y} = 252000 \text{ mm}^3$ $W_{pl,v} = 337457 \text{ mm}^3$ Cross section modulus z axis $W_{el,z} = 252000 \text{ mm}^3$ W

$$V_{\rm pl,z} = 337457 \ {\rm mm}^3$$

The greatest thickness of the cross section $t_{max} = 10 \text{ mm}$

 $V_{pl,Rd} = \frac{A_{vz} \cdot f_y}{\gamma_{M0} \cdot \sqrt{3}} = \frac{3674 \cdot 355}{1.05 \cdot \sqrt{3}} = 717 \text{ kN}$ Design plastic shear resistance

Design moment resistance reduced due to the shear, $V_{Ed} < 1/2V_{pl,Rd}$

$$V_{Ed} = 25 \text{ kN} < \frac{1}{2} V_{pl,Rd} = 359 \text{ kN} => Shear effect can be neglected$$

Design bending resistance

$$M_{Rd,y} = \frac{W_{pl,y} \cdot f_y}{\gamma_{M0}} = \frac{337 \cdot 10^{-5} \cdot 355 \cdot 10^{-5}}{1.05} = 114 \text{ kNm}$$

Check

 $s = \frac{M_{Ed}}{M_{Rd,y}} = \frac{20 \text{ kNm}}{114 \text{ kNm}} = 0.175 < 1$ => Is SUFFICIENT Cross section unity check

Check of steel profile on simple compression: RO193.7X10 UNI EN 1993-1-1

Loading:

Axial force

 $N_{Fd} = 70 \text{ kN}$

Cross section parameters:

	Cross section area	$A = 5770 \text{ mm}^2$	
d = 0.194	Cross section class	1	
	Steel material	S 355	
	The greatest thickness o	f the cross section	$t_{max} = 10 mm$

Bearing capacity calculation:

Compression bearing capacity

$$N_{c,Rd} = \frac{A \cdot f_{y}}{\gamma_{M0}} = \frac{5.77 \cdot 10^{-3} \cdot 355 \cdot 10^{6}}{1.05} = 1951 \text{ kN}$$

Check:

N_{Ed} N_{c,Rd} = $\frac{70 \text{ kN}}{1951 \text{ kN}}$ = 0.0359 < 1 *=> Is SUFFICIENT*

Bending + compression: 0,18+0,05 = 0,23 < 1 => Is SUFFICIENT

17.3.1.2 Verifica micropali inclinati

Figura 96: Inviluppo degli sforzi normali max.

Micropalo inclinato 168,3x6,3 S355

Sollecitazioni caratteristiche palo inclinato			inclinato	SLE	SLU
Sollecit	azione	Interasse		Sollecitazione / palo	Sollecitazione / palo
[U/	'm]	[m]	Ϋ́Ε	[U/m]	[U/m]
N	65	1,5	1,35	97,5	131,6

<u>Check of steel profile for simple tension:</u> <u>RO168.3X6.3</u> <u>UNI EN 1993-1-1</u>					
Loading:					
Design axial force	$N_{Ed} = 130 \text{ kN}$				
Cross section parameters:					
	Cross section area	A = 3210	$A = 3210 \text{ mm}^2$		
	Steel material	S 355			
d = 0.168	The greatest thicknes	ss of the cross section	t _{max} = 6.3 mm		
Tension bearing capacity					
Non-weakened bearing capacity	N _{pl,f}	$Rd = \frac{A \cdot f_y}{\gamma_{M0}} = \frac{3210 \cdot 355}{1.05} =$	= 1085 kN		
	N _{t,R}	_d = N _{pl,Rd} = 1085 kN			

Check

 $s = \frac{N_{Ed}}{N_{ed}} = \frac{130 \text{ kN}}{1085 \text{ kN}} = 0.12 < 1$ => Is SUFFICIENT

Capacità portante pali trivellati:

carico: ca. 6150 kN (spinta del terreno) + 3500 kN (appoggio per il solaio) = 9650 kN

Capacità portante a compressione

Coefficienti di riferimento	
Tipologia pali: Numero prove secondo Tab. 6.4.IV: ≥ 10 ▼	Coefficiente impiegato nella seguente relazione:
Coefficienti parziali per le resistenze caratteristiche A1 C1 A2 C1 (STR) (GEO) (GEO	Coefficiente di correlazione per prove di carico statico Tab. 6.4.III $\begin{array}{c c} \xi_1 & & & \\ \hline \xi_2 & & & \\ \hline \xi_2 & & & \\ \hline \end{array}$
Totale* Yt 1,00 1,30 Laterale in trazione Yst 1,00 1,25	$\begin{array}{c c} \text{Coefficiente di correlazione per verticali indagate Tab. 6.4.IV} \\ \hline \hline \xi_3 & 1.40 \\ \hline \xi_4 & 1.21 \\ \hline \end{array}$
	Coefficiente di correlazione per prove di carico dinamico Tab. 6.4.V $\begin{array}{c c} \xi_5 & & & \\ \hline \xi_6 & & & \\ \hline \xi_6 & & & \\ \hline \end{array}$
	Coefficiente di correlazione Valore definito dall'utente $\xi_{w/b}$
Geometria palo	
Diametro palo: U 8,10 m A Lunghezza palo: L= 6,50 m	1,86 m²
Stratigrafia terreno	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	2] (kN/m ²) 170,00 1° A
Fattore incrementale secondo Baustamante - Doix e Ostermyer Tipologia terreno α. α.*	*) Valore definito dall'utente B 2°
1° strato Definito dall'utente/ Benutzerdefini 1,15 2° strato ▼ 3° strato ▼ 4° strato ▼	3° ℃ ✔
*) Valore definito dall'uten	D
Carichi agonti	
#BEZUG!	E _d = 9650,00 kN 9650,00 kN
Carico limite palo	
Carico limite per resistenza laterale (STR	(GEO) (STR) (GEO)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Qk Qsk Qsk [kN/m²] [kN] [kN] 0 195,50 10293,08
Carico limite di punta Profondità [m] 6,50	ID293,08 ID293,08 Q _{bk} * Q _{bk} [kN/m²] [kN] 2500,00 4640,63 *)Valore definito dall'utente
Resistenza di progetto laterale Resistenza di progetto alla base	R _d = 8506,67 7397,11 R _d = 3835,23 2840,91
Resistenza di progetto	R _{d tot} = 12341,90 kN 10238,02 kN
Grado d'utilizzo	$\eta = E_d / R_d$ 78% 94%
Verifica a carico limite	R _d ≥E _d Verifica OK Verifica OK

17.3.2 Stato limite ultimo – Stabilità globale dell'opera

Dalla figura seguente si evince il meccanismo di collasso con il fattore di sicurezza più basso. Tutti gli altri meccanismi di collasso hanno un fattore di sicurezza più alto. La stabilità globale del complesso operaterreno è effettuata secondo l'Approccio 1, Combinazione 2 (A2+M2+R2).

Figura 97: Meccanismo di collasso secondo l'approccio 1 combinazione 2 – condizione statica

Il fattore di sicurezza è pari a 1,11; 1,11 > 1,1

La verifica è soddisfatta.

Figura 98: Meccanismo di collasso secondo l'approccio 1 combinazione 2 – condizione statica

Il fattore di sicurezza è pari a 1,41; 1,41 > 1,2

La verifica è soddisfatta.

17.3.3 Stato limite di esercizio – Spostamenti

Nelle seguenti immagini vengono riportate le deformazioni massimali derivanti dall'analisi per fasi.

Deformazione in condizione statiche SLE

Figura 99: Deformata dell'insieme terreno – parete in condizioni statiche (SLE)

Figura 100: Deformazioni verticali in condizioni statiche (SLE)

Le deformazioni verticali sotto le fondazioni sono dell'ordine dei 16 mm.

Figura 101: Deformazioni orizzontali in condizioni statiche (SLE)

Le deformazioni orizzontali sono dell'ordine di 15-20 mm.

18 "Berliner Verbau" Sezione 5-5 e 6-6

Calcolo con Eurocode 7-1 e NTC 2018

Valori di sistema

Testa paratia a traslazion	e libera				
Spinta attiva terreno					
Terreno non coesivo					
Piano campagna su	0.00 r	n			
Livello falda	100.00 m				
1. Pendio terreno	inizio	[m]	0.00		
	fine	[m]	1.78		
	altezza	[m]	1.75		
Conflictenti estate term E.	maaada 7				

Coefficienti spinta terr. Eurocode 7

Struttura paratia

Sez.	tipo par.	x₁[m]	z₁[m]	E[MN/m	²] A[cm ² /lfr	n] g[kN/m³]
	Profilo	x ₂ [m]	z ₂ [m]	l[cm4/lfr	m] d[cm]	
		a[m]	b[m]	EI[MN*n	n²]	
1	Paratia berlin.	0.0	0 1.7	5 210000.00	88.30	78.50
	HEB 240	0.0	0 9.7	5 9.3833E+(03 24.00	
		1.2	0 0.2	8 19.70)	
Valori stra	ti del terreno			Schicht1	Schicht2	
Altezza stra	ato	h	[m]	2.75	97.25	
Attr. interno)	P	[gradi]	30.00	38.00	
Attr. par. att	t.	δ _a	[gradi]	20.00	25.30	
Attr. par. pa	ISS.	ဝိ _စ	[gradi]	-20.00	-25.30	
Coesione a	attiva	Ca	[kN/m²]	5.0	0.0	
Coesione	passiva	C _p	[kN/m²]	5.0	0.0	
Peso spec.	terreno		[kN/m³]	18.5	20.0	
Peso spec.	sotto spinta		[kN/m³]	20.0	22.0	
Attrito rives	tim.		[MN/m²]	0.05	0.17	
Spinta punt	а		[MN/m²]	1.00	2.50	
Coefficien	ti spinta terre	no				
Coeff.sp.te	rreno	K _{aah}	(attiva)	0.285	0.200	
Coeff.coes	ione	K _{ach}	(attiva)	1.238	0.000	
Coeff. sovr	acc.	K _{aph}	(attivo)	0.285	0.200	
Coeff.res. t	erreno	K _{pah}	(pass.)	4.633	4.633 8.149	
Coeff.res. o	coes.	K _{pch}	(pass.)	6.292	6.292 0.000	
Coeff. sovra	acc.	K	(passivo)	4.633	8.149	

Sovraccarichi e paratia in coordinate globali

Tutti i carichi e le grandezze di taglio si riferiscono a 1 m di paratia.

Carichi lineari sul terreno

Nome	CA	q	X _A	X _E	zo	Tipo
Q	Q	20.00	2.30	8.00	-1.75	0

(G = permanente, Q = variabile, B = dal peso proprio terreno)

Applicazione dei carichi a blocco:

0 = Standard: secondo Eurocode 7

Eattori di sicurezza per frattura idraulica (SL HYD)

Fattoriu	i sicurezz	a per mai	lura iura	unca (SL	. הוטן		
γ-	Н	G,stb					
•	1.300	0.900					
Fattori d	i sicurezz	a per cal	colo della	a lunghe	zza della	parete	(GEO)
Calcolo d	on approc	cio 1					
Combina	zione 1 co	n fattori di	sicurezz	a die grup	opi A1 + N	/1 + R1	
γ-	G	E0g	W	L	01	Q	Qv
•	1.300	1.300	1.300	1.300	1.300	1.500	1.50
γ-	Ep	Wg	γ	Ø	С	cu	R,h
•	1.000	1.000	1.000	1.000	1.000	1.000	1.10
Combina	zione 2 co	n fattori di	sicurezz	a die grup	opi A2 + N	/l2 + R1	
γ-	G	E0g	W	L	01	Q	Qv

γ-	G	E0g	W	L	01	Q	Qv		
	1.000	1.000	1.000	1.000	1.000	1.300	1.300		
γ-	Ep	Wg	γ	¢	С	cu	R,h	b	S
•	1.000	1.000	1.000	1.250	1.250	1.400	1.100	1.000	1.000

1.500 R,h

1.100

b

1.000

s

1.000

Calcolo delle forze (STR) con gli stessi fattori come Combinazione rappresentativa per il calcolo della lunghezza del muro (GEO)

Calcolo delle deformazioni con valori charatterisici (SLS)

Calcolo delle lunghezze die ancoraggi (GEO) con gli stessi fattori come Calcolo della lunghezza parete (GEO)

coefficiente sic. parz. per
Pressione di filtrazione (terreno sfavorevole)
Azioni permanenti favorevoli
spinta da peso proprio terr. (escl. spinta a rip.)
spinta a riposo da peso proprio terreno e carichi perm.
pressione acqua come azione sfavorevole
press. acqua da carichi perm. (escl. spinta a rip)
carichi permanenti con spinta terr. a riposo
azioni da carichi variabili
azioni da carichi variabili ferroviari
resistenza terreno
pressione acqua come azione favorevole
Peso specifico
coefficiente attrito $tan(\varphi)$
coesione c
Coesione non drenata
resistenza allo slittamento
spinta punta
Attrito laterale del bordo

Caso carico Q

Andamento spinta terreno (char.) senza ridistribuzione [kN/m²]

Prof. z	Somma-e,	Somma e _h	e _h -terreno+est.	e _h -sovraccarico
0.00	0.000	0.383	0.383	0.000
0.00	0.000	4.031	0.383	3.648
0.14	0.286	7.416	3.768	3.648
2.75	13.893	21.202	17.555	3.648
2.75	13.893	20.296	16.648	3.648
8.00	90.314	41.293	37.645	3.648

Prof. z	Somma-e,	Somma e _h	e _h -terreno+est.	e _h -sovraccarico
8.00	90.314	41.293	37.645	3.648
11.38	167.208	54.830	51.182	3.648
11.38	167.208	51.182	51.182	0.000
100.00	9734.012	405.595	405.595	0.000

Scavo nr. 1

Paratia molto sporgente

*** Nota: nessuna rid. spinta terreno se mancano ancoraggi Piede della paratia incastrato (Blum)

La spinta negativa del terreno agisce sul sistema statico

Combinazione di calcolo rappresentativa: Combinazione 2

Iterazione lunghezza paratia

Lunghezza	Somma M	Somma M (Weissenbach)
3.85	132.20	
4.85	146.14	
6.75	-346.96	
6.45	-202.05	
6.15	-86.36	
5.85	2.92	
5.86	0.34	
5.86		121.85
6.86		-10.42
6.76		7.44
6.77		5.70
6.80		0.42
6.81		-1.36
6.80		0.42

*** Avviso:

il angolo d'inclinazione della forza sostitutiva C $\delta_{\!_e}$ è stato ridotto

Prof. z [m]	ర <mark>్మ్ [gradi]</mark> ర్మ్ [gradi]		
	(valore iniz.)	(valore ridotto)	
2.750	10.000	0.000	
8.000	12.667	0.000	
100.000	12.667	0.000	
Somma totale V (char.)	36.13 kN/m	17.83 kN/m	
Spinta pass. terr	Valore car.		Valore prog.
Prof. z [m]	e _{phk} [kN/m²]	Prof. z [m]	e _{phd} [kN/m ²]
0.000	0.000	0.000	0.000
3.350	0.000	3.350	0.000
6.800	-562.275	6.800	-361.486
Somma E _{nhk} =	-969.925 kN/m	Somma E _{atud} =	-623.563 kN/m

Suppl. prof. infissione EAB (EB25) = 0.2* 3.45 m = 0.69 m Lunghezza tot. paratia: 7.49 m, Prof. infiss. t = 4.14 m (incl. suppl. prof. infissione secondo EAB)

Prof. scavo z = 3.35 m, livello acqua = 100.00 m Forza appoggio piede: E_d = 318.28 kN <= R_d = 623.56 kN Forza sostitutiva su piede: C_d = -227.15 kN

Verifica di Weissenbach per m larghezza paratia

B0= 0.280 m, BSR= 0.920 m, BSK= 0.920 m, KR	R= 6.01, KK= 2.9	2	
B₀ minore di 0.3T= 1.035 m,	R _k =	372.30 kN	
BL=A-B0= 0.92m minore di profondità infissi	R _k =	464.21 kN	
Resist. terr. con γ _{Ep} /0.800 = 1.250:	R _d =	297.84 kN	
	E _d =	298.21 kN	$ca.=R_d$

Carico e grandezze di taglio della paratia di scavo

Grandezze di taglio caratteristiche

Deformazioni caratteristiche

Tutti i valori per m paratia rispetto ad asse baricentrico

Prof. z	Spinta H	Deform.	Momento		F.za tras.	A-H	Cost. el.
[m]	h [kN/m]	w [mm]	M [kNm]		Q [kN]	[kN]	[kN/mm]
0.000	4.03	92.4	0.00		0.00		
0.137	7.42	89.6	-0.05		-0.79		
0.988	11.90	72.3	-3.94		-9.00		
2.750	21.20	37.5	-43.10		-38.17		
2.750	20.30						
3.350	22.70	26.8	-69.80		-51.07		
3.350	0.00						
3.493	-5.13	24.5	-77.07		-50.70		
5.036	-60.59	5.3	-127.19	М	0.00		
5.650	-82.67	1.7	-114.37		44.00		
6.800	-124.00	0.0	0.00		162.83		

Significato: M=max/min-M (Q=0), A=Ancor. o sostegno, B=molle elastiche E=appoggio terreno

Scavo nr. 1	Mmax	0.00	Qamm	0.00,	Qmax	162.83	Mamm	0.00
	Mmin	-127.19	Qamm	0.00,	Qmin	-51.07	Mamm	-69.80
	maxw	92.4 mm						

Carico longitudinale della paratia dello scavo

_		•
Prof. z	Car.long.	F.za normale
[m]	n [kN/m]	N [kN]
0.000	2.16	0.00
0.137	3.39	-0.38
0.988	5.03	-3.96
2.750	8.41	-15.80
2.750	10.29	-15.80
3.350	11.42	-22.31
3.350	0.69	-22.31
3.493	-0.39	-22.33
5.036	-12.16	-12.62
5.650	-16.84	-3.75
6.800	-25.60	20.66

Equilibrio forze H e V

(Valori di progetto con coefficienti di sicurezza)

(Talen al progette con coolin					
	da z	a z	componente H	componente V	[kN/m]
Spinta terreno:	0.00	3.35	70.70	27.57	(δ _a)
Ancoraggi/Puntoni:			0.00	0.00	(α)
Forza sost. piede:			227.15	0.00	(δ _ε)
Somma:			297.84	27.57	
Res.ter. Weissenbach:	3.35	6.80	-297.84		
(Comp. attrito determ.:			-133.61)	-63.16	(ర్ _ల)
(Comp. coesione determ.:			0.00)	0.00	(ర్త్)
Peso proprio paratia:				4.71	
Somma tot. (con peso parati	ia): 0.00	-30.88	(v.l'alto)		
Verifica della comp. vertic	ale d.resiste	enza terr	eno attivato (EA	B.EB 9)	
Forza:				V _k [kN/m]	
Spinta terreno:				19.99	(δ _a)
Ancoraggi/Puntoni:				0.00	(α)
Peso proprio paratia:				4.71	
Forza sost. piede:	(1/2 C _v)			0.00	<mark>(</mark> გ.)
Somma:				24.70	
Resistenza terreno: (B _v -	1/2*C _h *tan(&	"))		6.87	
Verifica: V _k = 24.70 kl *** Verifica soddisfatta ***	N/m >= B _v	= 6.87	7 kN/m		
Verifica delle forze vertica	ali nel sottos	uolo (EA	AB, EB 84)		
Azioni		-	-	V _d [kN/m]	
Spinta terreno:				27.57	(၀ိ _.)
Ancoraggi/Puntoni:				0.00	(a)

Peso proprio paratia:			4.71	
Forza sost. piede:	(1/2 C _v)		0.00	(δ _c)
Somma:			32.28	
Resistenze			R₄ [kN/m]	
Superficie del piede per	pressione a pico (cm²/m):	513.1		
Spinta punta:			128.28	
Attrito rivest .:			214.96	
Somma:			343.25	

Verifica: V_d = 32.28 kN/m <= R_d = 343.25 kN/m *** Verifica soddisfatta ***

2020-021_DEF_GEO_RST_001_C

Rottura del terreno

Lastfall Q (Typ: BS-T) Gleitkörper von x = -8.92 bis 8.20 m Gleitkreis: $x_M = -1.12$ m, $z_M = 1.75$ m, R = 9.32 m

Bestimmung der Lamellen-Anteile

X _M	Breite	Eigen-	Auflast	Wasser-	φ	С	J
	b	gewicht		auflast			
[m]	[m]	[kN/m]	[kN/m]	[kN/m]	[Grad]	[kN/m²]	[Grad]
-5.10	0.21	13.76	0.00	0.00	38.00	0.0	-25.30
-4.50	1.00	71.60	0.00	0.00	38.00	0.0	-21.26
-3.50	1.00	78.14	0.00	0.00	38.00	0.0	-14.79
-2.50	1.00	82.26	0.00	0.00	38.00	0.0	-8.51
-1.50	1.00	84.16	0.00	0.00	38.00	0.0	-2.34
-0.50	1.00	73.98	0.00	0.00	38.00	0.0	3.81
0.50	1.00	133.92	0.00	0.00	38.00	0.0	10.01
1.50	1.00	164.68	0.00	0.00	38.00	0.0	16.32
2.50	1.00	164.90	0.00	0.00	38.00	0.0	22.85
3.50	1.00	154.99	0.00	0.00	38.00	0.0	29.71
4.50	1.00	141.77	9.89	0.00	38.00	0.0	37.07
5.50	1.00	124.14	26.00	0.00	38.00	0.0	45.24
6.50	1.00	99.95	26.00	0.00	38.00	0.0	54.82
7.50	1.00	62.96	26.00	0.00	30.00	5.0	67.61
8.10	0.20	4.38	0.00	0.00	30.00	5.0	81.55
X _M						R*T _i	R*G*
							sin(୬)
[m]						[kNm/m]	[kNm/m]
-5.10						92.97	-54.81
-4.50						456.94	-242.00
-3.50						462.45	-185.97
-2.50						459.94	-113.51
-1.50						451.36	-31.98
-0.50						385.53	45.87
0.50						686.31	216.96
1.50						839.81	431.46
2.50						847.44	596.93
3.50						814.53	716.05
4.50						830.47	852.36
5.50						879.97	993.93
6.50						827.76	959.70
7.50						666.92	766.85
8.10						68.07	40.36
Summen:						8770.47	4992.19
Einfluss von Ba	auwerken						
Gewicht	Hebelarm		٥	2	θ	M _{rückh}	Matter
[kN/m] 5.19	[m] 1.12		[Gr 32	ad] .01	[Grad] 6.90	[kNm/m] 26.79	[kNm/m] 5.81

Ansatz des Erdwiderstands bei x = -5.21 m:

Kraft E _p	Hebelarm	Wasserdruck W	Hebelarm	M _{rückh}	M _{abtr.}
[kN/m]	[m]	[kN/m]	[m]	[kNm/m]	[kNm/m]
318.20	7.29	0.00	0.00	2318.43	0.00

Einwirkungen $E_d = 4998.00 \text{ kN}$ Widerstände $R_d = 11115.70 \text{ kN}$

 $E_d/R_d = 0.45 < 1.0$

*** Nachweis erfüllt ***

Scala: 1:8

Misurazione paratia berlinese (fino a 6.80 m)

Grandezze taglio determinanti (per trave):

per carichi: γ_F secondo Approcio 1 per resistenze: $\gamma_M = 1.05$	
Grandezze di taglio di progetto	
Momento determinante M max. = 0.00 kNm nello scave) 1
$N \operatorname{amm}_{d} = 0.00 \text{ kN}$	
az = 0.00 m	
Momento determinante M min. = -213.86 kNm nello scave) 1
N amm. _d = -19.91 kN	
az = 5.00 m	
Forza trasversale determinanteV max. = 136.29 kN nello scavo	1
M amm.₄ = -0.51 kNm	
N amm.₄ = 37.05 kN	
a z = 6.80 m	

*** Nota: in caso di incastro di Blum viene applicato metà del valore della forza sostitutiva C (Weissenbach).

Profilo selezionato: HEB 240, Qualità cls: S 275 (St 44-2)

Valori sezione trasv. della trave:										
P	eso	=	83.20	kg/m						
N	y.ol	=	938.00	cm³						
N	y.pl	=	1053.00	cm³						
A		=	105.96	cm²						
A	,	=	33.20	cm²						
E		=	23.65	MNm ²						
Limite di snervamento	f _{yk}	=	275.00	MN/m²						

Verifiche secondo UNI EN 1993 (Eurocode 3):

Verifica elasto-plastica

M max. (z = 0.00)	Classe	di resistenza:	1		
Sollecitazione taglio	V _{Ed} 0.00	V _{pl,Rd} 502.02	V _{Ed} /V _{pl,Rd} 0.00	Interazione No	Ver ok Sì
Sollecitazione forze assiali	N _{ed} 0.00	N _{t⊮d} 2775.14	N _{ed} /N _{t,Rd} 0.00	No	Sì
Sollecitazione a flessione	M _{Ed} 0.00	М _{рі.Rd} 275.79	$M_{ed}/M_{pl,Rd}$ 0.00	-	Sì

M min. (z = 5.00)	Classe	di resistenza:	1		
Sollecitazione taglio	V _{Ed}	$V_{pl,Rd}$	$V_{Ed}/V_{pl,Rd}$	Interazione	Ver ok
	3.08	502.02	0.01	No	Sì
Sollecitazione forze assiali	N _{ed}	N _{c,Rd}	$N_{ed}/N_{c,Rd}$		
	-19.91	2775.14	0.01	No	Sì
Sollecitazione a flessione	M _{Ed}	M _{pl.Rd}	$M_{ed}/M_{pl,Rd}$		
	-213.86	275.79	0.78	-	Sì
V max. (z = 6.80)	Classe	di resistenza:	1		
Sollecitazione taglio	V _{Ed}	V _{pl.Rd}	V _{Ed} /V _{pl.Rd}	Interazione	Ver ok
	136.29	502.02	0.27	No	Sì
Sollecitazione forze assiali	N _{ed}	N _{t.Rd}	N _{Ed} /N _{LRd}		
	37.05	2775.14	0.01	No	Sì
Sollecitazione a flessione	Med	M _{ol Ed}			
	-0.51	275.79	0.00	-	Sì

Misurazione deltamponamento in legno secondo Eurocode 5

Distanza travi a =	1.20 m					
Ampiezza di ap pe .	0.96 m					
Sistema statico:						
Scala: 1:7.5						
						$\overline{\ }$
*			l = 0.96 m			
Carico determinante o Carichi da peso propr Fattore riduttivo g sec Carico determinante o Grandezze taglio: Tensione ammissibile: Spessore necessario:	con z = 3.35 ne io terreno + sc ondo EB 47: q = 0.67*24.99 M Max = $q^{* ^2/}$ $f_{m,d}$ $d_{nec.}$	ello scavo 1 (Valori di ovraccarichi estesi g 8 = 16.66*0.96²/8	progetto) = 24.99 kN/m ² 0.67 = 16.66 kN/m ² = 1.92 kNm/m = 18.46 N/mm ² = 2.50 cm	(k _{mod} = 1.00)		
Selezionato: legno	d = 3.00 c	m, Tipo legno C 2	<u>4</u>			
Verifica:	W esist. _y esist. $\sigma_{m,d}$ $\sigma_{m,d}/f_{m,d}$	= 150.00 cm ³ /m = 12.80 N/mm ² = 0.69 < 1.00 ***	Verifica soddisfat	ta ***		
Compressione appoge	gi:o _{m.d}	= 0.17 N/mm ² <	f _{c,90,d} = 1.9 *** Ver	rifica soddisfatta	***	

7.4 mm

<u>Riassunto</u>

Deformazione:

Tutte le verifiche sono soddisfatte

19 Sezione 6-6

19.1 Descrizione

Il solaio ha uno spessore di 115 cm e 105 cm (cls C35/45).

Sugli elaborati allegati sono riportati i parametri succitati.

19.2 Modello di calcolo

19.2.1 Geometria del modello di calcolo

Di seguito è riportato il modello computazionale.

Figura 103: carico g₂

 $g_2 = 40 \text{ kN/m}^2$

Figura 105: carico q_s

 $q_s = 1,30 \text{ KN/m}^2$

19.2.1.1 Verifiche SLU

SLU: Stati limite ultimi – Azioni interne

Figura 106: Inviluppo momento flettente max. inferiore in direzione x-

Figura 107: Inviluppo momento flettente max. inferiore in direzione y-

Figura 108: Inviluppo momento flettente max. superiore in direzione x+

Figura 109: Inviluppo momento flettente max. superiore in direzione y+

Figura 110: Inviluppo degli sforzi normali sugli appoggi

Figura 111: Inviluppo momento flettente trave lato edifico esistente (canale)

Figura 112: Inviluppo degli sforzi normali trave lato edifico esistente (canale)

Figura 113: Inviluppo degli sforzi di taglio trave lato edifico esistente (canale)

Innenstütze- Wandeck

Anzahl : 1

Matorial)	1.095 + 1.005 + 1.005	2.050 , 760 , 7 23xP 23xP	4.560	760 760 380 -3/2280(380/760 -3/2280(380/760	0/760/380) 0/760/380)
Betonfestigkeitsklasse		C35/45		$f_{cl} = \alpha_{cc} \frac{f_c}{f_{cl}}$	<u>*</u> _ 19,8 N	/mm ² EN 206-1
Biegebewehrung		B450B		$f_{yd} = \frac{\gamma}{\gamma}$	^a <u>₄k</u> = 391,3 N	/mm² EN 10080
Geometrie			4.450			
Statische Höhe Betondeckung		nd = d _x = c _u =	1.150 1.000 30	mm mm mm	d _y = c _o =	1.050 mm 30 mm
Bewehrungsquerschnitt/m Bewehrungsgrad Wandecke	D	A _{sx} = ρ _x = licke a =	7.500 0,75 500	mm² % mm	A _{sy} = ρ _y = Einfluss: b =	7.500 mm² 0,71 % 1.538 mm
Lasten						
Durchstanzlast Dvnamischer Lastanteil	V _{Ed} = V _{dvn} =	5.000,0 kl 0,0 kl	N N	V _{Ed} *β =	6.000.0 kN	
Lasterhöhungsfaktor	β=	1,2		,		EN 1992-1-1: 6.4.3(6)
Kritischer Rundschnitt						
Länge des Rundschnittes	u ₁ =	6.295 m	m			EN 1992-1-1: 6.4.2
Bemessungswert der Betonnormalspannung $v_{Ed} = \frac{1}{v_{Ed}}$	$\frac{1}{u_{Ed} \cdot \beta} =$	929,9 kl	N/m²			EN 1992-1-1: 6.4.3

Durchstanzwiderstand ohne Durchstanzbewehrung

holzner. bertagnolli

2020-021_DEF_GEO_RST_001_C

$v_{Rd,c} = [C_{Rd,c} \cdot k_d \cdot (\rho_1 \cdot f_{ck})]$	$\left[\frac{1}{3}\right] \cdot 1000 \cdot f =$	510,0 kN/m	2 <	v _{Ed} =	929,9 kN/m²	EN 1992-1-1: 6.4.4
C_{i}	$_{Rd,c} = \frac{C_{Rk,c}}{\gamma_C} =$	0,12				EOTA TR 060
$v_{min} = \left(\frac{0,037}{\gamma_C}\right)$	$(\frac{75}{-}) \cdot k_d^{\frac{3}{2}} \cdot f_{ck}^{\frac{1}{2}} =$	0,2560 kN/m	2			
Max. Durchstanzwiderstand	1	000 C I-NV	2 -		020.0 1.01/2	
$v_{Rd,max} = k_{max} \cdot [C_{Rd,c,max} \cdot k_d \cdot (\rho_1 \cdot f_{ck})]$	$\left[3\right] \cdot 1000 \cdot f =$	999,6 KIV/m	- >	VEd =	929,9 KW/m-	EUTATR 060
$C_{Rd,c,max}$	$=\frac{C_{Rk,c,max}}{\gamma_C}=$	0,12				EOTA TR 060
	k _{Max} =	1,96				
Äußerer Rundschnitt						
Abstand	I _{s,erf} =	3.813 mm	<	s,prov =	= 4.180 mr	n
Erforderliche Länge des Rundschnittes	u _{out,req} =	11.479 mm	<	U _{out,prov} =	= 12.056 mr	n
	C _{Rd,c,out} =	0,12				
Lasterhöhungsfaktor	$\beta_{red} =$	1,20				
Bemessungswert der Betonnormalspan	nung					
$v_{Ed,out} = \frac{\beta_{red} \cdot V_{Ed}}{(u_{out,prov} - \Delta u_{out,prov})}$	$\frac{1}{d_{out}} \cdot 10^6 =$	485,5 kN/m²				
Tragfähigkeit im äußeren Rundschnitt						
$v_{Rd,c,out} = [C_{Rd,c,out} \cdot k_d \cdot (\rho_1 \cdot f_{ck})]$	$\left[\frac{1}{3}\right] \cdot 1000 =$	510,0 kN/m²	>	V _{Ed,out} =	= 485,5 kN	/m²
Durchstanzbewehrung						
Ermittelte Durchstanzbewehrung						
Erste Leiste		23xPSB-25	/1095	-3/2280(380/	760/760/380)	
Zweite Leiste		23xPSB-25	/1095	-3/2280(380/	760/760/380)	
Durchstanzwiderstand der Durchstanzbewehrung						
$V_{Rd,sy} = m_c \cdot n_c \cdot A_{si} \cdot f_{yd} / (\eta \cdot 1000) =$	6.135,9 kN	>		V_{Ed}^*	3 = 6.000,0	kN

Innenstütze- Wandende

Anzahl : 1

26xPSB-25/1095-3/2280(380/760/760/380)

Material				
Betonfestigkeitsklasse	C35/45	$f_{cd} = lpha_{cc} rac{f_{ck}}{\gamma_c}$	_ 19,8 N/m	nm ² EN 206-1
Biegebewehrung	B450B	$f_{yd} = \frac{f_{yk}}{\gamma_s}$	_ 391,3 N/m	nm² EN 10080
Geometrie				
Plattendicke	h _d =	1.150 mm		
Statische Höhe	d _x =	1.000 mm	d _y =	1.050 mm
Betondeckung	c _u =	30 mm	c _o =	30 mm
Bewehrungsquerschnitt/m	A _{sx} =	7.500 mm ²	A _{sv} =	7.500 mm ²
Bewehrungsgrad	ρ _x =	0,75 %	ρ _y =	0,71 %
Wandende	Dicke a =	800 mm	Einfluss: b =	800 mm

Lasten

Durchstanzlast Dynamischer Lastanteil	V _{Ed} = V _{dyn} =	5.000,0 kN 0,0 kN	V _{Ed} *β =	6.750,0 kN	
Lasterhöhungsfaktor	β =	1,35			EN 1992-1-1: 6.4.3(6)

holzner. bertagnolli

2020-021_DEF_GEO_RST_001_C

Kritischer Rundschnitt						
Länge des Rundschnittes	u ₁ =	8.840 mm				EN 1992-1-1: 6.4.2
Bemessungswert der Betonnormalspa	nnung	7440104				EN 4000 4 4
1	$v_{Ed} = \frac{v_{Ed} \cdot p}{u_1 \cdot d} =$	744,9 KN/n	n -			EN 1992-1-1: 6.4.3
Durchstanzwiderstand ohne Durchstar	zbewehrung					
$v_{Rd,c} = [C_{Rd,c} \cdot k_d \cdot (\rho_1 \cdot f_c$	$k^{\frac{1}{3}} \cdot 1000 \cdot f =$	510,0 kN/n	n² <	v _{Ed} =	744,9 kN/m²	EN 1992-1-1: 6.4.4
0	$C_{Rd,c} = \frac{C_{Rk,c}}{\gamma_C} =$	0,12				EOTA TR 060
$v_{min} = \left(\frac{0, 0}{\gamma}\right)$	$\frac{375}{c}$) $\cdot k_d^{\frac{3}{2}} \cdot f_{ck}^{\frac{1}{2}} =$	0,2560 kN/n	n²			
Max. Durchstanzwiderstand						
$v_{Rd,max} = k_{max} \cdot [C_{Rd,c,max} \cdot k_d \cdot (\rho_1 \cdot f_c)]$	$_{k})^{\frac{1}{3}} \cdot 1000 \cdot f =$	999,6 kN/n	n² >	v _{Ed} =	744,9 kN/m ²	EOTA TR 060
$C_{Rd,c,max}$	$_{r} = \frac{C_{Rk,c,max}}{\gamma_{C}} =$	0,12				EOTA TR 060
	k _{Max} =	1,96				
Äußerer Rundschnitt						
Abstand	I _{s,erf} =	1.810 mm	<	I _{s,prov} =	1.900 mn	n
Erforderliche Länge des Rundschnittes	U _{out,req} =	12.915 mm	<	U _{out,prov} =	13.199 mr	n
	C _{Rd,c,out} =	0,12				
Lasterhöhungsfaktor	$\beta_{red} =$	1,35				
Bemessungswert der Betonnormalspa	nnung					
$v_{Ed,out} = \frac{\beta_{red} \cdot V_{Ed}}{(u_{out,prov} - \Delta u_{out,prov})}$	$\cdot d_{out} \cdot 10^6 =$	498,9 kN/m²				
Tragfähigkeit im äußeren Rundschnitt						
$v_{Rd,c,out} = [C_{Rd,c,out} \cdot k_d \cdot (\rho_1 \cdot f_d)]$	$_{k})^{\frac{1}{3}}] \cdot 1000 =$	510,0 kN/m²	>	V _{Ed,out} =	498,9 kN	/m²

Durchstanzbewehrung					
Ermittelte Durchstanzbewehrung Erste Leiste			26xPSB-25/109	5-3/2280(380/760/	760/380)
Durchstanzwiderstand Durchstanzbewehrung	der				,
$V_{Rd,sy} = m_c \cdot n_c \cdot A_{si} \cdot f_{yd} / (\eta \cdot 10)$	=(00)	6.936,3 kN	>	$V_{Ed}^*\beta =$	6.750,0 kN

Eckstütze

î 🛓

Anzahl : 1

Betonfestigkeitsklasse		C35/45		f_{cd}	$a = \alpha_{cc} \frac{f_c}{\gamma}$	<u>*</u> = 19,8 N/	mm ² EN 206-1
Biegebewehrung		B450B			$f_{yd} = \frac{f_y}{\gamma_z}$		mm ² EN 10080
Geometrie							
Plattendicke		h _d =	1.150	mm			
Statische Höhe		d _x =	1.000	mm		d _y =	1.050 mm
Betondeckung		c _u =	30	mm		c _o =	30 mm
Bewehrungsquerschnitt/m		A _{sx} =	4.000	mm²		A _{sv} =	4.000 mm ²
Bewehrungsgrad		ρ _x =	0,40	%		ρ _y =	0,38 %
Rechteckstütze		a =	600	mm		b =	1.200 mm
Lage	E	ckstütze					
Randabstand		r _a =	0	mm		r _b =	0 mm
Lasten							
Durchstanzlast	V _{Ed} =	2.600,0	kN				
Dynamischer Lastanteil	V _{dyn} =	0,0	kN	VE	_d *β =	3.900,0 kN	
Lasterhöhungsfaktor	β =	1,5					EN 1992-1-1: 6.4.3(6)
Kritischer Rundschnitt							
Länge des Rundschnittes	u ₁ =	5.020	mm				EN 1992-1-1: 6.4.2
Bemessungswert der Betonnormalspannu	ing						
v_{Ed}	$=\frac{V_{Ed} \cdot \beta}{u_1 \cdot d}=$	757,9	kN/m²				EN 1992-1-1: 6.4.3
Durchstanzwiderstand ohne Durchstanzb	ewehrung						
$v_{Rd,c} = [C_{Rd,c} \cdot k_d \cdot (ho_1 \cdot f_{ck})^{rac{1}{2}}]$	$\cdot 1000 \cdot f =$	393,4	kN/m²	<	V _{Ed} =	757,9 kN/m²	EN 1992-1-1: 6.4.4
$C_{Rd,c} = rac{C_{Rk,c}}{\gamma_C} \cdot (0, 1 \cdot \frac{1}{\gamma_C})$	$\frac{u_0}{d} + 0, 6) =$	0,1141					EOTA TR 060
$v_{min} = \langle \frac{0, 0375}{\gamma_C} \rangle$	$(\cdot k_d^{\frac{3}{2}} \cdot f_{ck}^{\frac{1}{2}}) =$	0,2560	kN/m²				
Max. Durchstanzwiderstand							
$v_{Rd,max} = k_{max} \cdot [C_{Rd,c,max} \cdot k_d \cdot (\rho_1 \cdot f_{ck})^{\frac{1}{2}}]$	$\cdot 1000 \cdot f =$	771,1	kN/m²	>	V _{Ed} =	757,9 kN/m²	EOTA TR 060
$C_{Rd,c,max} = \frac{C_{Rk,c,max}}{\gamma_C} \cdot (0, 1 \cdot 1)$	$\frac{u_0}{d} + 0, 6) =$	0,1141					EOTA TR 060
	k _{Max} =	1,96					

Äußerer Rundschnitt Abstand s,erf = 1.628 mm 1.900 mm < s,prov = Erforderliche Länge u_{out,reg} = 6.772 mm < u_{out,prov} = 7.200 mm des Rundschnittes 0,12 C_{Rd,c,out} = $\beta_{red} = \frac{\beta}{1, 2 + \frac{\beta}{15} \cdot \frac{l_*}{d_{red}}} =$ Lasterhöhungsfaktor 1,10 $\begin{array}{l} \textbf{Bemessungswert der Betonnormalspannung} \\ v_{\textit{Ed,out}} = \frac{\beta_{\textit{red}} \cdot V_{\textit{Ed}}}{(u_{\textit{out,prov}} - \Delta u_{\textit{out,prov}}) \cdot d_{\textit{out}}} \cdot 10^6 = \end{array}$ 387,6 kN/m² Tragfähigkeit im äußeren Rundschnitt $v_{Rd,c,out} = [C_{Rd,c,out} \cdot k_d \cdot (\rho_1 \cdot f_{ck})^{\frac{1}{2}}] \cdot 1000 =$ 413,6 kN/m² > V_{Ed,out} = 387,6 kN/m² Durchstanzbewehrung Ermittelte Durchstanzbewehrung Erste Leiste 15xPSB-25/1095-3/2280(380/760/760/380)

Durchstanzwiderstand der			-	
$V_{Rd,sy} = m_c \cdot n_c \cdot A_{si} \cdot f_{yd} / (\eta \cdot 1000) =$	4.001,7 kN	>	$V_{Ed}^*\beta =$	3.900,0 kN

Symbolverzeichnis

As A _{s.i} C _{Rk.c}	Querschnittsfläche der Bewehrung Querschnittsfläche eines Bolzens		N _{prov} U ₁ U _{out.prov}	Vorhandene Anzahl der Anker pro Element Umfang des kritischen Rundschnitts Vorhandene Länge des Rundschnitts
C _{Rk.max}			U _{out.reg}	Erforderlicher Umfang des Rundschnitts
M _{Ed.v} , M _{Ed.x}	Bemessungswert	der	V _{Min}	Mindestwert des Durchstanzwiderstandes
	Momentenbeanspruchung			
V _{Ed}	Bemessungswert der Durchstanzlast		VEd	Bemessungswert der Betonnormalspannung
V _{dvn}	Dynamischer Lastanteil		V _{Rd.c}	Durchstanzwiderstand ohne
-,	,			Durchstanzbewehrung
ΔV	Resultierende Kraft aus Bodenpressung		V _{Rd.max}	Max. Durchstanzwiderstand mit
				Durchstanzbewehrung
V _{Rd.sv}	Durchstanzwiderstand	der	β	Lasterhöhungsfaktor
	Durchstanzbewehrung		-	-
W _{1.x} , W _{1.y}	Nach EN 1992-1-1 (6.40)		βred	Lasterhöhungsfaktor
C _x , C _y	Abstand der Bewehrungsstäbe		Yc	Teilsicherheitsbeiwert des Betons
d_x, d_y	Abstand der Bewehrungsstäbe		Ys	Teilsicherheitsbeiwert der Bewehrung
f	2		ρ_x, ρ_y	Bewehrungsgrad
f _{ck}	Charakteristischer Wert	der	ρl	Mittelwert des Bewehrungsgrads
	Zylinderdruckfestigkeit des Betons			00
f _{cd}	Bemessungswert der Zylinderdruckfestig	keit	Δσs	Bemessungswert der Ermüdungsfestigkeit
	des Betons			ů ů ů
f _{yk}	Charakteristischer Wert der Streckgre	enze	$\Delta \sigma_{Rs.d}$	Bemessungswert der Schwingbreite
	der Bewehrung			· ·
f _{yd}	Bemessungswert der Streckgrenze	der	η	Faktor zur Berücksichtigung der Plattendicke
	Bewehrung			
g _d	Bodenpressung			
k _d	Faktor			
k _{d.max}	Faktor			
s.reg	Erforderliche Länge der Ankerelemente			
s.prov	Vorhandene Länge			
m _e	Anzahl der Ankerelemente			

19.2.1.2 Verifiche SLE

SLE: Stati limite di esercizio – Controllo dell'inflessione

Figura 114: Deformazione solaio verticale – Combinazione quasi-permanente

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

holzner. bertagnolli

2020-021_DEF_GEO_RST_001_C

	Ek	Imp.	Σ (γ*ψ*EW)					
Brand	5	5	1.00*Gk	+0.30*Qk.N				
quasi-ständig	9	9	1.00*Gk	+0.30*Qk.N				
	11	7	1.00*Gk	+0.30*Qk.N				
	12	8	1.00*Gk	+0.30*Qk.N				
Bemessung (GZT)	gemä	BUNI EI	N 1992-1-1, 3.1,	3.2, 5.4, 5.7, 5.8				
Material	Beton C 30/37						Betonstah	I B 450C
	Elasti	zitätsm	odul		Ecm	=	33000	N/mm²
	maxir	naler B	ewehrungsgrad		ρ_{max}	=	9.0	
Rechteckquerschnitt	Breite	2			b	=	75.0	cm
	Dicke				h	=	150.0	cm
	Bewe	hrungs	anordnung: Aa=/	Asr				
	Expos	itionsk	lassen:					
	Mind	estbeto	ondeckung		Cmin	=	30.0	mm
	Vorha	altemaí	3		Δc	=	10.0	mm

M 1:35

Bruchschnittgrößen	nach nichtlir	nach nichtlinearer Theorie							
Komb. 1	x [m]	Nu [kN]	Mys [kNm]	. Mzu] [kNm]	ءع [‰]	εc [‰]	η		
	8.50	19616.8	0.0	0.0	-2.00	-2.00	0.75		
	6.38	18669.2	0.0	-258.4	-1.17	-2.72	0.80		
	4.25	18299.0	0.0	-358.5	-1.02	-2.86	0.82		
	2.13	18668.5	0.0	-258.6	-1.17	-2.72	0.81		
	0.00	19616.8	0.0	0.0	-2.00	-2.00	0.77		
Erforderliche Bewehrung	von x [m]	bis x [m]	Тур Е	Bew.Art	d' [cm]	As,ges [cm ²]	م [%]		
	6.38	8.50	R A	Asi=Asr	6.2	12.57	0.11		
	4.25	6.38	R 🖌	Asi=Asr	6.2	12.57	0.11		
	2.13	4.25	R 🖌	Asi=Asr	6.2	12.57	0.11		
	0.00	2.13	R 🖌	Asi=Asr	6.2	12.57	0.11		

holzner bertagnolli enginee rina

Erf. Bewehrung M 1:115

Brandfall

gemäßallgemeinem Verfahren nach EN 1992-1-2

- Berechnungsgrundlagen: spezifische Wärme vom Beton (3.3.2)

- Spezifische Warme vom beton (3.5.2)
 Feuchte des Betons 3.0%
 Wärmeübertragungskoeffizient 25 W/m²K
 themische Leitfähigkeit des Betons: obere Grenze
 Emissionswert der Betonoberfläche 0.7
 Festigkeitsred. Bewehrung für Klasse N
 Bewehrung kalverformt

- Bewehrung kaltverformt
- quarzhaltige Betonzuschläge

Steifigkeiten im Brandfall

Seiten	EA	Ely	Elz
[-]	[kN]	[kNm²]	[kNm²]
r/I/o/u	22224593.91	3141693.92	631773.65
	Seiten [-] r/I/o/u	Seiten EA [-] [kN] r/l/o/u 22224593.91	Seiten EA Ely [-] [kN] [kNm²] r/l/o/u 22224593.91 3141693.92

Temperaturprofil Bewehrung

Y	Z	R	θ	Es,8/Es	f _{y,} ø/f _y
[cm]	[cm]	[cm]	[°]	[-]	[-]
-31.30	-68.80		536	0.34	0.57
31.30	-68.80		536	0.34	0.57
-31.30	68.80		536	0.34	0.57
31.30	68.80		536	0.34	0.57
-31.30	-45.87		337	0.66	0.98
31.30	-45.87		337	0.66	0.98
-31.30	-22.93		337	0.66	0.98
31.30	-22.93		337	0.66	0.98
-31.30	0.00		337	0.66	0.98
31.30	0.00		337	0.66	0.98
-31.30	22.93		337	0.66	0.98
31.30	22.93		337	0.66	0.98
Y	Z	R	θ	Es,e/Es	fy,ø/fy
--------	-------	------	-----	---------	---------
[cm]	[cm]	[cm]	[1]	[-]	[-]
-31.30	45.87		337	0.66	0.98
31.30	45.87		337	0.66	0.98

Bruchschnittgrößen	nach nichtl Komb. 5	inearer Theori	e		
	x [m]	Nu [kN]	Myu [kNm]	Mzu [kNm]	η
	8.50	12928.8	0.0	0.0	0.72
	6.38	12557.7	0.0	-181.0	0.74
	4.25	12409.6	0.0	-252.8	0.76
	2.13	12546.3	0.0	-180.4	0.75
	0.00	12857.5	0.0	0.0	0.74

Erforderliche Bewehrung	von x [m]	bis x [m]	Тур	Bew.Art	d' [cm]	A _{s.ges} [cm ²]	ρ [%]
	0.00	8.50	R	Ast=Asr	6.2	43.98	0.39

Erf. Bewehrung M 1:115

Nachweise (GZT)	Nachweise im Grenzzustand der Tragfähigkeit nach UNI EN 1992-1-1								
Querkraftbemessung	×	Ved,y Ved,z	VRd,c VRd,c	VRd,max,y VRd,max,z	Nx	θ	z	erf a _{sw}	
	[m]	[kN]	[kN]	[kN]	[kN]	[°]	[cm]	[cm²/m]	
Komb. 1	8.50	108.64	904.10	2722.3	14800	21.8	61.9	14.61™	
Komb. 1	6.38	76.75	904.10	2722.3	14878	21.8	61.9	14.61™	
Komb. 1	4.25	0.79	904.10	2722.3	14955	21.8	61.9	14.61™	
Komb. 1	2.13	76.52	904.10	2722.3	15033	21.8	61.9	14.61™	

2020-021_DEF_GEO_RST_001_C

	x	Ved,y Ved,z	VRd,c VRd,c	VRd,max,y VRd,max,z	N×	θ	z	erf æw
	[m]	[kN]	[kN]	[kN]	[kN]	[°]	[cm]	[cm²/m]
Komb. 1	0.00	109.20	904.10	2722.3	15111	21.8	61.9	14.61™

M: Mindestguerkraftbew. nach Abs. 9.2.2(5)

Bewehrungswahl

Querschnitt M 1:70

> Långsståbe: 14 Ø20 Querkraftsewehnung: Ø12 Betondeckung: cnom = 40 mm

Nachweise (GZG)

Verformungen im Gebrauchszustand

\$ Steifigkeiten	nach linear	er Th.II	.0.:			
von x [m]	bis x [m]	l [kN/m	Ec,ett 1m²]	ρ [%]	Ely,i [MNm²]	Elz,ı [MNm²]
0.00	8.50	33	3.00	0.39	7119.6	1805.9
x	max w _y	Ek	max w ₂	Ek	Ely,#/	Elz,#/
[m]	[cm]	[-]	[cm]	[-]	Ely,I	Eiz,i
8.50	0.00	9	0.00	11	1.00	1.00
6.38	1.11	9	-1.04	12	0.48	0.50
4.25	1.57	9	-1.48	12	0.48	0.49
2.13	1.11	9	-1.05	12	0.48	0.49
0.00	0.00	9	0.00	9	1.00	1.00

Auflagerkräfte

Auflagergrößen am Stützenkopf	Einw	F _{x,k} [kN]	M _{y,k} [kNm]	M _{z,k} [kNm]	F _{y,k} [kN]	F _{z,k} [kN]
	Gk	0.0	0.0	0.0	0.0	0.0
	Qk.N	0.0	0.0	0.0	0.0	0.0
		-			_	_
Auflagergrößen am Stützenfuß	Einw	F _{x,k} [kN]	Μ _{γ,k} [kNm]	M _{z,k} [kNm]	F _{y,k} [kN]	F _{z,k} [kN]
	Gk	8739.1	0.0	0.0	0.0	0.0
	Qk.N	2500.0	0.0	0.0	0.0	0.0

holzner. bertagnolli engineering

Anteile aus Th. II Ordnung	Einw	ΔM _{y,k} [kNm]	ΔM _{z,k} [kNm]	ΔF _{γ.k} [kN]	ΔF _{z,k} [kN]	
	Gk Qk.N	0.0 0.0	0.0 0.0	0.4 0.0	0.3 0.0	
Zusammenfassung	Zusammenfassung der Na	chweise				
Nachweise (GZT)	Nachweise im Grenzzustan	nd der Tragfähi	gkeit			
	Nachweis		η [-]			
	Stabilität			OK		
	Bruchschnittgroßen	OK	0.82			
	Brand	OK				
	Bewehrungswahl			ОК		
Nachweise (Brand)	Brandfall im Grenzzustand der Tragfähigkeit					
	Nachweis		η [-]			
	Bruchschnittgrößen	OK	0.76			

19.4 Fondazioni

Г.

Carico limite dell'insieme fondazione-terreno in condizioni drenate

Descrizione e coefficienti parziali

		A1 C1 🔍 🔻	A2 C1 🔻	mslm
	Combinazione	(STR)	(GEO)	254.00
		A1+M1+R1	A1+M1+R3	253,00
coefficienti parziali per	γ _{G1}	1,30	1,30	253,00
e azioni (Ai)	γ_{G2}	1,50	1,50	252,00
	γ _{Qi}	1,50	1,50	251,00
Coefficienti parziali per	γ _φ '	1,00	1,00	250,00
parametri geotecnici	γc	1,00	1,00	249,00
Mi)	γ_{cu}	1,00	1,00	248,00
Coeff. parz. per	γ _γ	1,00	1,00	247,00
verifiche SLU (Ri)	Υ _R	1,00	2,30	246,00

Impostazioni generali			
			m
Quota piano campagna	s.l.s.	252,90 m s.l.m.	s.l.s.
Quota piano posa fondazione	s.l.b.	251,90 m s.l.m.	N 7
Quota pelo libero falda	 s.l.g.t.	247,10 m s.l.m.	s.l.b. V1 Hx g
Inclinazione base di fondazione	α	0,00 °	
Profondità di posa	d	1,00 m	$\stackrel{\text{s.l.g.t}}{\checkmark}$ γ_2
Profondità falda	z _w (↓+)	5,80 m	₩
			////// *///////** ////////

Parametri del terreno							
			A1+M1+R1	A1+M1+R3			
Peso di vol. umido del terreno, sopra s.l.b.	γı	20,00 kN/m ³	20,00 kN/m ³	20,00 kN/m ³			
Peso di vol. umido del terreno, sotto s.l.b.	γ ₂	20,00 kN/m ³	20,00 kN/m ³	20,00 kN/m ³			
Angolo di resistenza al taglio	φ2'	38,00 °	38,00 °	38,00 °			
Coesione	c ₂ '	0,00 kN/m²	0,00 kN/m ²	0,00 kN/m²			
Peso specifico acqua	ү _{н20}	10,00 kN/m ³					
Peso specifico C.A.	γ _{c.a.}	25,00 kN/m³					

Carichi agenti G_{1k} G_{2k} Q_k $G_{ik} + Q_k$ 2500,00 Carico verticale alla base, escl. peso proprio 8500,00 11000,00 kN Ν Carico verticale alla base, incl. peso proprio 11750,00 kN Carichi orizzontali alla base lungo asse x H_{x} 0,00 kN Carichi orizzontali alla base lungo asse y Hy 0,00 kN Momenti applicati lungo asse x 0,00 kNm m_x Momenti applicati lungo asse y 0,00 kNm m_y Eccentricità $e_x = m_x / N$ 0,00 m e_x 0,00 m $e_v = m_v / N$ e_v Eccentricità aggiuntiva m e_{x,additional} e_{y,additional} m Eccentricità totale 0,00 m e_{x,tot.} 0,00 m e_{y,tot.} A1+M1+R1 A1+M1+R3 Sollecitazione verticale totale di progetto N_{d} 15775,00 kN 15775,00 kN

Caratteristiche geometriche fondazione			
			B' 2e _B
Lunghezza (asse Y)	L	7,50 m	X
Larghezza (asse X)	В	4,00 m	
Altezza	н	1,00 m	
Peso fondazione		750,00 kN	
Dimensioni ridotte per l'eccentricità			
Lunghezza ridotta	$L' = L - 2 \cdot e_{y,tc}$	7,50 m	5 e
Larghezza ridotta	$B' = B - 2 \cdot e_{x,t}$	4,00 m	
Impronta ridotta	$A' = L' \cdot B'$	30,00 m²	Y B

Carico limite del terreno - verifica in condizioni dre	enate					
Calcolo secondo Eurocodice 7, Appendice D.4	A1+M1+R1		A1+M1+R3			
$R/A' = c' \cdot N_{c} \cdot b_{c} \cdot s_{c} \cdot i_{c} + q_1 \cdot N_q \cdot b_q \cdot s_q \cdot i_q + 0, 5 \cdot \gamma_2 \cdot B \cdot N_q \cdot b_q \cdot s_q$	·iγ					810900000000000000000000000000000000000
Coeff canacità portante	N ₂ = (N ₂ -1)	·cotan(ø')	61.35		61.35	
Coeff, peso terreno	$N_a = tan^2$	$45^{\circ} + \phi'/2$) · e^(π·tan(φ'))	48,93		48,93	
Coeff. coesione terreno	$N_{\gamma} = 2 \cdot (N_{q} -$	1)·tan(φ')	74,90		74,90	
Pressione q alla profondità del piano di posa, con	B+d < z _w	$q_1 = \gamma_1 \cdot d$	20,00		20,00	
falda in quiete		γ ₂	20,00		20,00	
	d < z _w ≤ B+	$d q_1 = \gamma_1 \cdot d$				
		$\gamma_2 = \gamma'_2 + (\gamma_2 - \gamma'_2) \cdot (z_w - d) / c_w - d = 0$	E			
	$0 \le z_W \le d$	$q_1 = \gamma_1 \cdot z_w + \gamma'_1 \cdot (d - z_w)$ γ'_2				
	z _w < 0	$q_1 = \gamma'_1 \cdot d$ γ'_2				
Coeff. geometrico	m = m _x = m	H _B = (2 + B'/L') / (1 + B'/L')	1,65		1,65	
	$m = m_y = m_A = (2 + L'/B') / (1 + L'/B')$		1,35		1,35	
Coeff. di forma	$s_c = (s_q \cdot N_q -$	1) / (N _q -1)	1,34		1,34	
	$s_{a} = 1 + B'/I$	_'·sinφ'	1,33		1,33	
	s _γ = 1 - 0,3	B'/L'	0,84		0,84	
			x:	y:	x:	y:
Coeff. carichi inclinati	i _c = i _q - (1-i _c	_q)/(N _c ·tanφ')	1,00	1,00	1,00	1,00
	i _a = (1 - H/(N+A'·c'·cotanφ'))^m	1,00	1,00	1,00	1,00
	i _γ =(1-H/(N+A'·c'·cotanφ'))^(m+1)	1,00	1,00	1,00	1,00
Coeff. inclinazione base fondazione	$b_{c} = b_{q} - (1)$	- b _q) / (Ν _c ·tanφ')	1,00		1,00	
	$b_{\alpha} = (1 - \alpha \cdot 1)$	tanφ')²	1,00		1,00	
	$b_{\gamma} = b_{c}$		1,00		1,00	
Carico limite	R/A' = q _{lim}		3816,62 kN	/m²	3816,62 kN/	′m²
Resistenza di progetto	$R_d = q_{lim} / \gamma$	R	3816,62 kN	/m²	1659,40 kN/	/m²
Sollecitazione di progetto	$E_d = N_d / A'$		525,83 kN	/m²	525,83 kN/	′m²
Grado di utilizzo	$\eta = E_d / R_d$		14%		32%	
Verifica carico limite	R _d ≥E _d		Verifica soddisfatta		Verifica soddisf	atta

Sollecitazione verticale totale di progetto

 N_d

Descrizione e coefficienti parziali A1 C1 ▼ A2 C1 • m s.l.m. Combinazione (STR) (GEO) 254,00 A1+M1+R1 A1+M1+R3 253,00 Coefficienti parziali per γ_{G1} 1,30 1,30 le azioni (Ai) 252,00 1,50 1,50 γ_{G2} 251,00 1,50 1,50 γ_{Qi} 250,00 Coefficienti parziali per 1,00 γ_φ' 1,00 249,00 parametri geotecnici γ_c' 1,00 1,00 (Mi) 248,00 1,00 1,00 γ_{cu} 247,00 Coeff. parz. per 1,00 1,00 γ_γ 246,00 verifiche SLU (Ri) 1,00 2,30 γ_R 0 2 4 6 8 Impostazioni generali × m_v Quota piano campagna s.l.s. 252,90 m s.l.m. s.l.s. Quota piano posa fondazione s.l.b. 251,70 m s.l.m. $H_{\rm X}$ Quota pelo libero falda 247,10 m s.l.m. s.l.g.t. Y1 s.I.b. α 0,00 ° Inclinazione base di fondazione α γ₂ s.l.g.t Profondità di posa d 1,20 m Profondità falda z_w (↓+) 5,80 m в Parametri del terreno A1+M1+R1 A1+M1+R3 Peso di vol. umido del terreno, sopra s.l.b. 20,00 kN/m³ Y1 20,00 kN/m³ 20,00 kN/m³ Peso di vol. umido del terreno, sotto s.l.b. 20,00 kN/m³ 20,00 kN/m³ 20,00 kN/m³ γ₂ Angolo di resistenza al taglio 38,00 ° 38,00 ° 38,00 ° φ2 Coesione c₂' 0,00 kN/m² 0,00 kN/m² 0,00 kN/m² Peso specifico acqua **ү**н20 10,00 kN/m³ Peso specifico C.A. γ_{c.a.} 25,00 kN/m³ Carichi agenti G_{1k} G_{2k} Qk $G_{ik} + Q_k$ Carico verticale alla base, escl. peso proprio Ν 13500,00 4000,00 17500,00 kN Carico verticale alla base, incl. peso proprio 18625,00 kN Carichi orizzontali alla base lungo asse x H_x 0,00 kN Carichi orizzontali alla base lungo asse y 0,00 kN H_v Momenti applicati lungo asse x 0,00 kNm m_x Momenti applicati lungo asse y 0,00 kNm m, Eccentricità $e_x = m_x / N$ 0,00 m e, $e_v = m_v / N$ 0,00 m e_y Eccentricità aggiuntiva 0,00 m e_{x,additional} 0,50 m e_{y,additional} Eccentricità totale 0,00 m e_{x,tot.} 0,50 m e_{y,tot.} A1+M1+R1 A1+M1+R3

25012,50 kN

25012,50 kN

Caratteristiche geometriche fondazione			
			B' 2 e B
Lunghezza (asse Y)	L	7,50 m	×
Larghezza (asse X)	В	5,00 m	
Altezza	н	1,20 m	
Peso fondazione		1125,00 kN	
Dimensioni ridotte per l'eccentricità			
Lunghezza ridotta	$L' = L - 2 \cdot e_{y,tc}$	6,50 m	2 e
Larghezza ridotta	$B' = B - 2 \cdot e_{x,t}$	5,00 m	
Impronta ridotta	$A'=L'\cdotB'$	32,50 m²	Y B

Carico limite del terreno - verifica in condizioni dre	enate					
Calcolo secondo Eurocodice 7, Appendice D.4			A1+M1+R1		A1+M1+R3	
$R/A' = c' \cdot N_{c} \cdot b_{c} \cdot s_{c} \cdot i_{c} + q_{1} \cdot N_{q} \cdot b_{q} \cdot s_{q} \cdot i_{q} + 0, 5 \cdot \gamma_{2} \cdot B \cdot N_{Y} \cdot b_{Y} \cdot s_{Y}$,-iγ			100000000000000000000000000000000000000		
Coeff. capacità portante	$N_{c} = (N_{a} - 1)$	·cotan(φ')	61,35		61,35	
Coeff. peso terreno	$N_{q} = tan^{2}(4$	$45^{\circ} + \phi'/2$) · e^(π·tan(φ'))	48,93		48,93	
Coeff. coesione terreno	$N_{\gamma} = 2 \cdot (N_{q})$	1)·tan(φ')	74,90		74,90	
Pressione q alla profondità del piano di posa, con	B+d < z _w	$q_1 = \gamma_1 \cdot d$				
falda in quiete		γ ₂				
	d < z _w ≤ B+	$d q_1 = \gamma_1 \cdot d$	24,00		24,00	
		$\gamma_2 = \gamma'_2 + (\gamma_2 - \gamma'_2) \cdot (z_w - d)/E$	19,20		19,20	
	$0 \le z_W \le d$	$q_1 = \gamma_1 \cdot z_w + \gamma'_1 \cdot (d - z_w)$ γ'_2				
	z _w < 0	$q_1 = \gamma'_1 \cdot d$ γ'_2				
Coeff. geometrico	m = m _x = m	u _B = (2 + B'/L') / (1 + B'/L')	1,57		1,57	
	$m = m_y = m_A = (2 + L'/B') / (1 + L'/B')$		1,43		1,43	
Coeff. di forma	$s_c = (s_q \cdot N_q -$	1) / (N _q -1)	1,48		1,48	
	$s_{q} = 1 + B'/I$	_'·sinφ'	1,47		1,47	
	s _γ = 1 - 0,3 ·	B'/L'	0,77		0,77	
			x: _	y:	x:	y:
Coeff. carichi inclinati	i _c = i _q - (1-i,	_q)/(N _c ·tanφ')	1,00	1,00	1,00	1,00
	i _a = (1 - H/(N+A'·c'·cotanφ'))^m	1,00	1,00	1,00	1,00
	i _γ =(1-H/(N+A'·c'·cotanφ'))^(m+1)	1,00	1,00	1,00	1,00
Coeff. inclinazione base fondazione	$b_{c} = b_{q} - (1)$	- b _q) / (Ν _c ·tanφ')	1,00		1,00	
	$b_{\alpha} = (1 - \alpha \cdot 1)$	tanφ')²	1,00		1,00	
	$b_{\gamma} = b_{c}$		1,00		1,00	
Carico limite	R/A' = q _{lim}		4496,08 kN	/m²	4496,08 kN/	/m²
Resistenza di progetto	$R_d = q_{lim} / \gamma$	'n	4496,08 kN	/m²	1954,82 kN/	/m²
Sollecitazione di progetto	$E_d = N_d / A'$		769,62 kN	/m²	769,62 kN/	/m²
Grado di utilizzo	$\eta = E_d / R_d$		17%		39%	
Verifica carico limite	R _d ≥ E _d		Verifica soddisfatta		Verifica soddisf	atta

20 "Berliner Verbau" Sezione 11-11

Calcolo con Eurocode 7-1 e NTC 2018

Valori di sistema

Testa paratia a traslazion	e libera		
Spinta attiva terreno			
Terreno non coesivo			
Piano campagna su	0.00 r	n	
Livello falda	100.00 r	n	
1. Pendio terreno	inizio	[m]	0.00
	fine	[m]	1.19
	altezza	[m]	1.10
0 m · · · · ·			

Coefficienti spinta terr. Eurocode 7

Struttura paratia

Sez.	tipo par.		x₁[m]	z₁[m]		E[MN/m ²]	A[cm²/lfm]	g[kN/m³]
	Profilo		x ₂ [m]	z ₂ [m]		l[cm4/lfm	1]	d[cm]	
			a[m]	b[m]		EI[MN*m ²	2]		
1	Paratia berlir	1.	0.00	1.10)	210000.00	-	75.80	78.50
	HEB 220		0.00	8.10)	6.7417E+0	3	22.00	
			1.20	0.30)	14.16			
Valori stra	ti del terreno					Schicht1	s	Schicht2	
Altezza str	ato	h		[m]		3.40		96.60	
Attr. interne	D	P		[gradi]		30.00		38.00	
Attr. par. at	tt.	Ó _a		[gradi]		20.00		25.33	
Attr. par. p	ass.	ဝိ _စ		[gradi]		-20.00		-25.33	
Coesione	attiva	Ca		[kN/m²]		5.0		0.0	
Coesione	passiva	Cp		[kN/m²]		5.0		0.0	
Peso spec	. terreno			[kN/m³]		18.5		20.0	
Peso spec	. sotto spinta			[kN/m³]		20.0		10.0	
Attrito rives	stim.			[MN/m ²]		0.05		0.17	
Spinta pun	ta			[MN/m ²]		1.00		2.50	
Coefficier	nti spinta terr	eno							
Coeff.sp.te	erreno	Kaah		(attiva)		0.285		0.200	
Coeff.coes	sione	Kach		(attiva)		1.238		0.000	
Coeff. sovi	acc.	Kaoh		(attivo)		0.285		0.200	
Coeff.res.	terreno	K		(pass.)		4.633		8.153	
Coeff.res.	coes.	Kpch		(pass.)		6.292		0.000	
Coeff. sovi	racc.	Kpph	((passivo)		4.633		8.153	

Sovraccarichi e paratia in coordinate globali

Tutti i carichi e le grandezze di taglio si riferiscono a 1 m di paratia.

Carichi lineari sul terreno

Nome	e CA	q	X _A	XE	zo	Tipo
Q	Q	20.00	1.70	10.00	-1.10	0

(G = permanente, Q = variabile, B = dal peso proprio terreno)

Applicazione dei carichi a blocco:

0 = Standard: secondo Eurocode 7

Fattori di sicurezza per frattura idraulica (SL HYD)

γ- H G,stb 1.300 0.900

Fattori di sicurezza per calcolo della lunghezza della parete (GEO)

Calcolo con approccio 1

Combinazione 1 con fattori di sicurezza die gruppi A1 + M1 + R1

γ-	G	E0g	W	L	01	Q	Qv		
•	1.300	1.300	1.300	1.300	1.300	1.500	1.500		
γ-	Ep 1.000	Wg 1.000	γ 1.000	∉ 1.000	с 1.000	cu 1.000	R,h 1.100	b 1.000	s 1.000

Combinazione 2 con fattori di sicurezza die gruppi A2 + M2 + R1

γ-	G	E0g	W	L	01	Q	Qv		
	1.000	1.000	1.000	1.000	1.000	1.300	1.300		
γ -	Ep	Wg	γ	¢	С	cu	R,h	b	S
•	1.000	1.000	1.000	1.250	1.250	1.400	1.100	1.000	1.000

Calcolo delle forze (STR) con gli stessi fattori come Combinazione rappresentativa per il calcolo della lunghezza del muro (GEO)

Calcolo delle deformazioni con valori charatterisici (SLS)

Calcolo delle lunghezze die ancoraggi (GEO) con gli stessi fattori come Calcolo della lunghezza parete (GEO)

γ-	coefficiente sic. parz. per
Ĥ	Pressione di filtrazione (terreno sfavorevole)
G,stb	Azioni permanenti favorevoli
G	spinta da peso proprio terr. (escl. spinta a rip.)
E0g	spinta a riposo da peso proprio terreno e carichi perm.
W	pressione acqua come azione sfavorevole
L	press. acqua da carichi perm. (escl. spinta a rip)
01	carichi permanenti con spinta terr. a riposo
Q	azioni da carichi variabili
Qv	azioni da carichi variabili ferroviari
Ep	resistenza terreno
Wg	pressione acqua come azione favorevole
γ	Peso specifico
φ	coefficiente attrito tan(φ)
c	coesione c
cu	Coesione non drenata
R,h	resistenza allo slittamento
b	spinta punta
S	Attrito laterale del bordo

Caso carico Q

Andamento spinta terreno (char.) senza ridistribuzione [kN/m²]

Prof. z	Somma-e _v	Somma e _h	e _h -terreno+est.	e _h -sovraccarico
0.00	0.000	0.000	0.000	0.000
0.00	0.000	3.855	0.000	3.855
0.07	0.106	4.126	0.271	3.855
0.24	0.384	4.761	0.905	3.855
3.40	15.411	21.410	17.555	3.855
3.40	15.411	20.500	16.645	3.855

כור	holzner bertagnolli
	opaipooripa

Prof. z	Somma-e _v	Somma e _h	e _h -terreno+est.	e _h -sovraccarico
7.00	62.616	34.895	31.040	3.855
7.00	62.616	34.895	31.040	3.855
15.62	275.230	69.350	65.495	3.855
15.62	275.230	65.495	65.495	0.000
100.00	9631.357	402.921	402.921	0.000

Scavo nr. 1

Paratia molto sporgente Piede della paratia incastrato (Blum)

La spinta negativa del terreno agisce sul sistema statico

Combinazione di calcolo rappresentativa: Combinazione 2

Nessuna ridistribuzione

Iterazione lunghezza paratia

Lunghezza	Somma M	Somma M (Weissenbach)
3.55	83.95	
4.55	75.46	
5.45	-61.26	
5.15	2.93	
5.16	1.12	
5.17		69.06
6.17		-48.44
6.07		-32.53
5.77		9.09
5.78		7.84
5.81		4.06
5.84		0.18
5.85		-1.13

*** Avviso: il angolo d'inclinazione della forza sostitutiva C

δ_c è stato ridotto

Prof. z [m]	ర్మ్ [gradi] ర్మ్ [gradi]		
	(valore iniz.)	(valore ridotto)	
3.400	10.000	0.000	
7.000	12.667	0.000	
100.000	12.667	0.000	
Somma totale V (char.)	25.01 kN/m	12.34 kN/m	
Spinta pass. terr	Valore car.		Valore prog.
Prof. z [m]	e _{phk} [kN/m²]	Prof. z [m]	e _{phd} [kN/m²]
0.000	0.000	0.000	0.000
3.050	0.000	3.050	0.000
3.050	-31.460	3.050	-20.437
3.400	-61.457	3.400	-42.192
3.400	-52.793	3.400	-33.936
5.840	-450.677	5.840	-289.702
Somma E _{phk} =	-630.494 kN/m	Somma E _{phd} =	-405.798 kN/m

Suppl. prof. infissione EAB (EB25) = 0.2* 2.80 m = 0.56 m Lunghezza tot. paratia: 6.40 m, Prof. infiss. t = 3.35 m (incl. suppl. prof. infissione secondo EAB)

Prof. scavo z = 3.05 m, livello acqua = 100.00 m Forza appoggio piede: $E_d = 224.79 \text{ kN} \leq R_d =$ 405.80 kN Forza sostitutiva su piede: C_d = -165.43 kN

Verifica di Weissenbach per m larghezza paratia

B0= 0.300 m, BSR= 0.900 m, BSK= 0.900 m, KR=	5.76, KK= 2.	85	
B₀ minore di 0.3T= 0.837 m,	R _k =	270.60 kN	
BL=A-B0= 0.90m minore di profondità infissi	R _k =	300.48 kN	
Resist. terr. con γ_{E_0} /0.800 = 1.250:	R _d =	216.48 kN	
1	E _d =	216.67 kN = R	d

Carico e grandezze di taglio della paratia di scavo

Grandezze di taglio caratteristiche

Deformazioni caratteristiche

Tutti i valori per m paratia rispetto ad asse baricentrico

Prol. 2 Spinia H Deform. Momento F.za tras. A-H Co	st. ei.
[m] h [kN/m] w [mm] M [kNm] Q [kN] [kN] [kN	l/mm]
0.000 3.86 52.6 0.00 0.00	
0.073 4.13 51.6 -0.01 -0.29	
0.245 4.76 49.3 -0.12 -1.05	
0.685 7.08 43.5 -1.13 -3.66	
3.050 19.56 13.8 -41.23 -35.17	
3.050 -7.38	
3.400 -14.41 10.2 -52.94 -31.36	
3.400 -12.38	
4.397 -50.52 2.8 -71.74 M 0.00	
4.898 -69.66 0.9 -64.61 30.07	
5.840 -105.70 0.0 0.00 112.71	

Significato: M=max/min-M (Q=0), A=Ancor. o sostegno, B=molle elastiche E=appoggio terreno

Scavo nr. 1	Mmax	0.00	Qamm	0.00,	Qmax	112.71	Mamm	0.00
	Mmin	-71.74	Qamm	0.00,	Qmin	-35.17	Mamm	-41.23
	maxw	52.6 mm	1					

Carico longitudinale della paratia dello scavo

_		-
Prof. z	Car.long.	F.za normale
[m]	n [kN/m]	N [kN]
0.000	2.00	0.00
0.073	2.10	-0.15
0.245	2.33	-0.53
0.685	3.17	-1.74
3.050	7.72	-14.62
3.050	-0.56	-14.62
3.400	-1.65	-14.23
3.400	-1.92	-14.23
4.397	-9.66	-8.40
4.898	-13.55	-2.65
5.840	-20.86	13.56

Equilibrio forze H e V

(Valori di progetto con coefficienti di sicurezza)

	da z	аz	componente H	componente V	[kN/m]
Spinta terreno:	0.00	3.05	51.05	18.58	(δ _a)
Ancoraggi/Puntoni:			0.00	0.00	(a)
Forza sost. piede:			165.43	0.00	(δ _c)
Somma:			216.48	18.58	
Res.ter. Weissenbach:	3.05	5.84	-216.48		
(Comp. attrito determ.:			-88.80)	-41.78	(රූ)
(Comp. coesione determ.:			-3.82)	-1.80	(ర్త్)
Peso proprio paratia:				3.47	
Somma tot. (con peso paratia):	0.00	-21.52	(v.l'alto)		

Verifica della comp. verticale d.resistenza terreno attivato (EAB,EB 9) Forza: V _k [kN/m]			
Spinta terreno:		12.80	(ố.,)
Ancoraggi/Puntoni: Peso proprio paratia:		0.00	(a)
Forza sost. piede: Somma:	(1/2 C _v)	0.00 16.28	<mark>(</mark>
Resistenza terreno:	$(B_v-1/2*C_h*tan(\delta_p))$	3.94	

Verifica: $V_k = 16.28 \text{ kN/m} \ge B_{vk} = 3.94 \text{ kN/m}$ *** Verifica soddisfatta ***

Verifica delle forze verticali nel sottosuolo (EAB, EB 84)

Azioni			V _d [kN/m]	
Spinta terreno:			18.58	(δ _a)
Ancoraggi/Puntoni:			0.00	(a)
Peso proprio paratia:			3.47	
Forza sost. piede:	(1/2 C _v)		0.00	<mark>(</mark>
Somma:			22.05	
Resistenze			R _d [kN/m]	
Superficie del piede per pres	sione a pico (cm²/m):	589.0		
Spinta punta:			147.26	
Attrito rivest .:			169.76	
Somma:			317.03	

Verifica: $V_d = 22.05 \text{ kN/m} \le R_d = 317.03 \text{ kN/m}$ *** Verifica soddisfatta ***

Lastfall Q (Typ: BS-T) Gleitkörper von x = -8.08 bis 7.39 m Gleitkreis: x_M = -1.17 m, z_M = 2.13 m, R = 8.63 m

Bestimmung der Lamellen-Anteile

X _M	Breite	Eigen-	Auflast	Wasser-	Ø	С	ß
	b	gewicht		auflast			
[m]	[m]	[kN/m]	[kN/m]	[kN/m]	[Grad]	[kN/m²]	[Grad]
-4.48	0.95	52.69	0.00	0.00	38.00	0.0	-22.52
-3.50	1.00	62.00	0.00	0.00	38.00	0.0	-15.65
-2.50	1.00	66.32	0.00	0.00	38.00	0.0	-8.85
-1.50	1.00	68.26	0.00	0.00	38.00	0.0	-2.18
-0.50	1.00	60.56	0.00	0.00	38.00	0.0	4.47
0.50	1.00	114.79	0.00	0.00	38.00	0.0	11.18
1.50	1.00	135.91	0.00	0.00	38.00	0.0	18.05
2.50	1.00	128.69	0.00	0.00	38.00	0.0	25.19
3.50	1.00	117.62	0.00	0.00	38.00	0.0	32.79
4.50	1.00	102.42	22.38	0.00	38.00	0.0	41.11
5.50	1.00	81.85	26.00	0.00	30.00	5.0	50.66
6.50	1.00	52.50	26.00	0.00	30.00	5.0	62.79
7.20	0.39	7.07	10.24	0.00	30.00	5.0	75.95
X _M						R*T _i	R*G*
							sin(୬)
[m]						[kNm/m]	[kNm/m]
-4.48						318.21	-174.12
-3.50						343.81	-144.30
-2.50						344.73	-88.04
-1.50						338.61	-22.35
-0.50						291.11	40.72
0.50						542.27	191.99
1.50						639.76	363.22
2.50						612.86	472.62
3.50						577.14	549.57
4.50						646.89	707.94
5.50						526.88	719.63
6.50						486.10	602.26
7.20						165.89	144.85
Summen:						5834.25	3363.97
Einfluss von Ba	auwerken						
Gewicht	Hebelarm		Ŷ		ぴ	M _{rückh.}	M _{abtr} .
[kN/m]	[m]		[Grad	4]	[Grad]	[kNm/m]	[kNm/m]
3.81	1.17		32.0	1	7.81	18.12	4.47
Ansatz des Erd	widerstands k	oeix = -4.95 m:					
Kraft E _p	Hebelarm	Wasserdruck V	V Hebela	ırm		M _{rückh} .	M _{abtr.}
[kN/m]	[m]	[KN/m]	[m]	•		[kNm/m]	[kNm/m]
196.31	6.88	0.00	0.0	0		1349.82	0.00

Einwirkungen $E_d = 3368.44 \text{ kN}$ Widerstände $R_d = 7202.19 \text{ kN}$

$$E_d/R_d = 0.47 < 1.0$$

*** Nachweis erfüllt ***

Misurazione paratia berlinese (fino a 5.84 m)

Scala: 1:8

Grandezze taglio determinanti (per trave):

coefficienti di sicurezza per carichi: per resistenze:	γ⊧ s γ _M =	econdo A 1.05	Approcio 1	
	Grand	ezze di ta	glio di progetto	
Momento determinante	M max. =	0.00	kNm nello scavo 1	
	N amm., =	0.00	kN	
	az =	0.00	m	
Momento determinante	M min. =	-127.20	kNm nello scavo 1	
	N amm.	-13.24	kN	
	az =	4.39	m	
Forza trasversale determinar	nteV max., =	99.26	kN nello scavo 1	
	M amm.	-0.22	kNm	
	N amm.	25.82	kN	
	a z =	5.84	m	

*** Nota: in caso di incastro di Blum viene applicato metà del valore della forza sostitutiva C (Weissenbach).

Profilo selezionato: HEB 220, Qualità cls: \$ 275 (St 44-2)

Valori sezione trasv. della trave:

	Peso	=	71.50	kg/m
	W _{y,ei}	=	736.00	cm³
	W _{y.pl}	=	827.00	cm³
	A	=	90.96	cm²
	A _v	=	27.90	cm²
	El	=	16.99	MNm ²
Limite di snervamento) f _{yk}	=	275.00	MN/m ²

Verifiche secondo UNI EN 1993 (Eurocode 3):

Verifica elasto-plastica

M max. (z = 0.00)	Classe	di resistenza:	1		
Sollecitazione taglio	V _{Ed} 0.00	V _{pl,Rd} 421,88	V _{Ed} /V _{pl,Rd}	Interazione No	Ver ok Sì
Sollecitazione forze assiali	N _{Ed} 0.00	N _{t.Rd} 2382.29	N _{Ed} /N _{t,Rd} 0.00	No	Sì
Sollecitazione a flessione	M _{ed} 0.00	M _{pl,Rd} 216.60	M _{Ed} /M _{pl,Rd} 0.00	-	Sì

M min. (z = 4.39)	Classe	di resistenza:	1		
Sollecitazione taglio	V _{Ed}	V _{pl.Rd}	V _{Ed} /V _{pl.Rd}	Interazione	Ver ok
	0.00	421.88	0.00	No	Sì
Sollecitazione forze assiali	N _{Ed}	N _{c.Rd}	$N_{ed}/N_{c,Rd}$		
	-13.24	2382.29	0.01	No	Sì
Sollecitazione a flessione	M _{Ed}	M _{pl.Rd}	$M_{ed}/M_{pl,Rd}$		
	-127.20	216.60	0.59	-	Sì
V max. (z = 5.84)	Classe	di resistenza:	1		
Sollecitazione taglio	V _{Ed}	V _{pl.Rd}	V _{Ed} /V _{pl,Rd}	Interazione	Ver ok
	99.26	421.88	0.24	No	Sì
Sollecitazione forze assiali	N _{Ed}	N _{t.Rd}			
	25.82	2382.29	0.01	No	Sì
Sollecitazione a flessione	Med	M _{ol.Bd}			
	-0 22	216 60	0.00	-	Sì

Misurazione deltamponamento in legno secondo Eurocode 5

Distanza travi a =	1.20 m		
Ampiezza di appe.	0.96 m		
Sistema statico: Scala: 1:7.5			
	\uparrow	$\begin{array}{c} \uparrow \ \uparrow $	\downarrow \downarrow \downarrow \downarrow \downarrow
	$\underline{\wedge}$		
			k
	1	I = 0.96 m	1
Carico determinant	te con z = 3.05 nello scavo 1 (Valori d	i progetto)	
Carichi da peso pro	oprio terreno + sovraccarichi estesi g	= 21.79 kN/m ²	
	da sovraccarichi a blocco p	= 5.01 kN/m ²	
Fattore riduttivo g	secondo EB 47:	0.67	
Carico determinant	te q = 0.67*21.79+5.01	= 19.54 kN/m ²	
Grandezze taglio:	M Max = $\alpha^{12}/8 = 19.54^{\circ}0.96^{2}/8$	= 2.25 kNm/m	
Tensione ammissib	pile: f _{md}	= 18.46 N/mm ² (k mod = 1.00)	
Spessore necessar	rio: d _{nec.}	= 2.70 cm	
0-1			
selezionato: legi	no a = 3.00 cm, 11po legno C 2	<u>24</u>	
Verifica:	W esist., = 150.00 cm ^s /m		

	esist. σ _{m,d} σ _{m,d} /f _{m,d}	=	15.01 N/mm ² 0.81 < 1.00 *** Verifica soddisfatta ***
Compressione appoggi: Deformazione:	σ _{m,d}	=	0.21 N/mm ² < $f_{c,90,d}$ = 1.9 *** Verifica soddisfatta *** 8.7 mm

Riassunto

Tutte le verifiche sono soddisfatte

21 Parete chiodata - Sezione 12

21.1 Descrizione

Questa è costituita da otto ordini di chiodi autoperforanti con un interrasse orizzontale di 1,60 (1,30). Lo spritzbeton ha uno spessore di 15 cm.

Sugli elaborati allegati sono riportati i parametri succitati.

21.2 Modello di calcolo

21.2.1 Geometria del modello di calcolo

Di seguito è riportato il modello computazionale della sezione più sfavorevole.

Figura 115:

Geometria del modello di calcolo

Per la modellazione del terreno si utilizza l'approccio HSS. I chiodi vengono modellati con "embedded beam row"

Parametri di calcolo dei chiodi autoperforanti (embedded beam row):

diametro:0,08mmodulo elastico E:25.000 N/mm² (per semplicità si considera solo il modulo elastico della miscelacementizia)

21.3 Verifiche

Si procede ora con le verifiche a stato limite ultimo, delle sezioni e di stabilità globale, e a stato limite di esercizio.

21.3.1 Stato limite ultimo – Sezioni / Elementi

Le sollecitazioni agenti sul sistema sono riportate nella tabella seguente, i valori sono caratteristici, non fattorizzati.

21.3.1.1 Verifica tensione chiodi

Figura 116: Inviluppo degli sforzi normali

holzner.	bertagnolli
engineering .	_

Verifica chiodi infissi nel terreno

כורו

Coefficienti parziali - NTC2018 §6.6 - c	hiodi		
Tipologia di chiodo	Temporaneo/Kurzzeitanker 💌	Azioni determinate considerando l'azi	one sismica No/Nein 🔻
Tipologia del terreno	Definito dall'utente/Benutzerdefinier 🔻		
Numero profili d'indagine Tab. 6.6.III	≥ 5 ▼	Coefficiente considerato nel calcolo de	ella resistenza ξa3 🔻
	Appr. 2 - Comb. 1 (GEO)	Appr. 1 - Comb. 1 (STR)	Combinazione sismica
	A1+M1+R1	A1+M1+R3	
Coefficiente per le azioni	Υ _E 1,35	γ _E 1,35	γ _E 1,00
Coefficiente di progetto	γ _{Ra} 1,10 Tab 6.6.1	γ _R 1,10	γ _R 1,00

oefficienti facenti riferimento agli ancoraggi					
Coefficiente di maggiorazione	αs		a)		
/alore definito dall'utente	ας	1,35			
Walari secondo tobollo Bustomento - Deiu o Osto					

Fattore di correlazione in funzione di p	orove di proge	etto Tab. 6.6.II
	ξ _{a1}	
	ξ _{a2}	
Fattore di correlazione		
Valore definito dall'utente	ξ _{u/b}	

Coefficienti facenti riferimento ai chiodi			
Tasso di lavoro ammesso	α_{R}	1,00	b)
	γs	1,15	
b) Valore definito nelle raccomandazioni AICAP maggio	1993§5.4.2		
Fattore di correlazione in funzione dalle i	ndagini geoteo	niche Tab. 6.6	į.III
	ξ _{a3}	1,60	
	ξ_{a4}	1,55	

Carichi agenti

Sollecitazione caratteristica agente

	Valore per combinazione GEO e STR		
2º ordine	P _{k,1}	52,0	kN/m
4º ordine	P _{k,2}	69,0	kN/m
6º ordine	P _{k.3}	88,5	kN/m
8º ordine	P _{k,4}	151,0	kN/m

Dati geometrici e meccanici

		Ch	iodo	
	Interasse	Nr. trefoli	Area trefoli	f _{p(1)k}
	[m]	[n]	[mm²]	[N/mm²]
2º ordine	1,6	1,0	430,0	510,0
4º ordine	1,6	1,0	430,0	510,0
6º ordine	1,6	1,0	800,0	500,0
8º ordine	1,3	1,0	800,0	500,0

Bulbo d'a	Attrito laterale	
Lunghezza	Diametro	qs
[m]	[m]	[kN/m²]
4,8	0,08	150,0
4,2	0,08	320,0
4,7	0,08	320,0
5,1	0,08	320,0
	Bulbo d'a Lunghezza [m] 4,8 4,2 4,7 5,1	Bulbo d'arroraggio Lunghezza Diametro [m] [m] 4,8 0,08 4,2 0,08 4,7 0,08 5,1 0,08

Carico limite di progetto

Carico agente di progetto:

		Appr. 1 - Co	omb. 1 (STR)
2º ordine	P _{d,1}	112,3	kN
4º ordine	P _{d,2}	149,0	kN
6º ordine	P _{d.3}	191,2	kN
8º ordine	P _{d,4}	265,0	kN
			,

_		
	Appr. 2 - Co	mb. 1 (GEO)
P _{d,1}	112,3	kN
P _{d,2}	149,0	kN
P _{d.3}	191,2	kN
P _{d.4}	265,0	kN

Resistenza di progetto in condizione SLU

	Resistenza	di progetto t	irante (STR)
2º ordine	R _{td,1}	190,70	kN
4º ordine	R _{td,2}	190,70	kN
6º ordine	R _{td,3}	347,83	kN
8º ordine	R _{td.4}	347,83	kN

Verifiche di sicurezza agli SLU svolte nel rispetto del paragrafo 6.6.2 delle NTC2018 Fattore di sicurezza in condizione SLU e GEO secondo Tab 6.2.I, 6.2.II e 6.6.I NTC 2018

	Fattore di	sicurezza re:	sistenza di
	proge	etto tirante	(STR)
2º ordine	$R_{td.1}/P_{d.1}$	1,70	≥1,0
4º ordine	$R_{td,2}/P_{d,2}$	1,28	≥1,0
6º ordine	R _{td,3} /P _{d,3}	1,82	≥ 1,0
8º ordine	R _{td,4} /P _{d,4}	1,31	≥ 1,0

Verifica	carico	limite
----------	--------	--------

Resist. a sfila	amento bulbo	d'ancoraggio
	(GEO)	
R _{ad,1}	137,36	kN
R _{ad,2}	259,10	kN
R _{ad,3}	289,94	kN
R _{ad,4}	314,62	kN

curezza resist.	a sfilamento
d'ancoraggio	GEO)
1,22	≥ 1,0
1,74	≥ 1,0
1,52	≥ 1,0
1,19	≥ 1,0
	curezza resist. : o d'ancoraggio (1,22 1,74 1,52 1,19

$R_{d,i} \ge P_{d,i}$ Verifica OK

21.3.2 Stato limite ultimo – Stabilità globale dell'opera

Dalla figura seguente si evince il meccanismo di collasso con il fattore di sicurezza più basso. Tutti i altri meccanismi di collasso hanno un fattore di sicurezza più alto. La stabilità globale del complesso operaterreno è effettuata secondo l'Approccio 1, Combinazione 2 (A2+M2+R2).

Figura 117: Meccanismo di collasso secondo l'approccio 1 combinazione 2 – condizione statica

Il fattore di sicurezza è pari a 1,15; 1,15 > 1,1 La verifica è soddisfatta.

21.3.3 Stato limite di esercizio – Spostamenti

Nelle seguenti immagini vengono riportate le deformazioni massimali derivanti dall'analisi per fasi.

Deformazione in condizione statiche SLE

Figura 118: Deformata dell'insieme terreno – parete in condizioni statiche (SLE)

Figura 119: Deformazioni verticali in condizioni statiche (SLE)

Le deformazioni verticali sono dell'ordine dei 25 mm.

2020-021_DEF_GEO_RST_001_C

Figura 120: Deformazioni orizzontali in condizioni statiche (SLE)

Le deformazioni orizzontali sono dell'ordine di 25 mm.

22 Allegati

22.1 Phi – C reduction and comparison with Bishop's method

This document describes an example that has been used to verify the ultimate limit state capabilities of PLAXIS 2D and PLAXIS 3D. The problem involves the stability of an embankment. The 2D results are compared with Bishop's method of slices. The influence of 3D load distribution is analysed.

Used version:

- PLAXIS 2D Version 2011
- PLAXIS 3D Version 2012

Input: In this validation the stability of an embankment is calculated by means of phi-c reduction. The situation is compared with a 2D calculation and with Bishop's slip circle method (see for example Verruijt (2001)). In PLAXIS 2D, the 6-noded model option is used. The embankment has a slope of 1:2, a height of 4.5 m and a width of 9.0 m. A load is applied to an area of 3.0×1.0 m on top of the embankment (Figure 1).

Figure 1 Geometry of the embankment

Material: The Mohr-Coulomb model is used and the unit weight γ is set to 16 kN/m³. The remaining properties of the soil are:

$E = 2600 \text{ kN/m}^2$	$c = 5 \text{ kN/m}^2$	$\nu = 0.3$
φ = 20°	$\psi = 20^{\circ}$	

Meshing: In PLAXIS 2D the *Fine* option is used for the *Global coarseness* to generate the mesh. In PLAXIS 3D the *Fine* option is used for the *Element distribution* to generate the mesh and the surface load is locally refined with a *Fineness factor* of 0.5.

Calculations: The initial stresses are generated using gravity loading. Then the embankment is subjected to the following analyses:

- · Phi-c reduction without additional loading
- Phi-c reduction after external loading of 30 kN/m²
- Applying an external load of 100 kN/m² to simulate failure

PLAXIS 2012 | Validation & Verification 1

Output: The initial safety factor without external loading is 1.57, the safety factor with external loading to 30 kN/m^2 is found to be 1.25 (Figure 2).

Figure 2 Load displacement curve

Verification: From the Bishop's slip circle method a safety factor of 1.56 is obtained for the initial situation. This value agrees with the PLAXIS calculation.

Figure 3 Bishop's slip circle method result

Influence of 3D effects: In addition safety factors are calculated for different situations where the load is only applied partially in order to see the influence of 3D effects. The following areas have been subsequently loaded to 30 kN/m²: $3 \times 3 \text{ m}$, $3 \times 6 \text{ m}$, $3 \times 12 \text{ m}$ and $3 \times 18 \text{ m}$ (Figure 4).

The safety factor decreases with increasing load as expected (see Figure 5). The

2 Validation & Verification | PLAXIS 2012

holzner bertagnolli

Figure 4 Incremental displacements after Phi-c reduction for the different loading areas

situation in which an area of 3×18 m is loaded is comparable to the situations as considered in the first part of this validation.

Figure 5 Load-displacement curve - Influence of 3D effects

PLAXIS 2012 | Validation & Verification 3

Inhaltsverzeichnis

1	Vork	bemerkung		. 1
	1.1	Beschreibung der Arbeiten		. 1
2	Nori	men		. 2
3	Allge	emeine Berechnungsannahmen		. 3
	3.1	Allgemeines		. 3
	3.2	Sicherheitskonzept		. 3
	3.2.3	1 Nachweis im Grenzzustand der Tra	gfähigkeit	. 4
	3.2.2	2 Nachweis im Grenzzustand der Ge	brauchstauglichkeit	. 5
	3.2.3	3 Stabilitätsnachweise (GEO)		. 7
	3.2.4	4 Nachweis der Verankerung Litzena	nker/ Selbstbohranker	. 7
	3.3	Software		. 8
4	Nutz	zungsdauer, Nutzungsklasse und Bezugs	zeitraum	. 9
5	Geo	technische Annahmen		10
	5.1	Geotechnische Parameter Baugrund		10
6	Einw	virkungen auf Tragwerke		11
	6.1	Klassifizierung der Einwirkungen nach Å	nderungen ihrer Intensität über die Zeit	11
	6.1.3	1 Ständige Einwirkungen (G)		11
	6.1.2	2 Veränderliche Einwirkungen (Q)		11
	6.1.3	3 Einwirkungen infolge Erdbeben (E		12
	6.2	Lastfallkombinationen		13
	6.3	Teilsicherheitsbeiwerte Einwirkungen.		13
	6.3.3	1 Teilsicherheitsbeiwerte für die Eig	enschaften der Baustoffe	13
	6.4	Kombinationsbeiwerte		14
	6.5	Teilsicherheitsbeiwerte für Bodenkenn	größen	14
	6.6	Streuungsfaktoren für Pfahlgründunge	1	15
	6.7	Teilsicherheitsbeiwerte für die Widerst	ände vorgespannter Anker	15
	6.8	Teilsicherheitsbeiwert für Böschungen	und Nachweis der Gesamtstandsicherheit	15
7	Last	annahmen		16
	7.1	Ständige Einwirkungen (zufolge Eigeng	ewicht)	16
	7.2	Ständige Einwirkungen (zufolge Auflast)	16
	7.3	Nutzlasten		16
	7.4	Lastannahmen bestehende Gebäude		16
8	Baus	stoffe		17
	8.1	Beton		17
	8.1.3	1 Expositionsklassen		17

8.2	Betonstahl	18
8.3	Baustahl	18
8.4	Vorgespannte Anker	18
8.5	Selbstbohranker	19

1 Vorbemerkung

Die Zone des Eingriffs befindet sich in Bozen und ist Teil des Projektes zum städtebaulichen Aufwertungsplan in der Zone Perathonerstraße -Südtirolerstraße.

Als Grundlage für die von Holzner&Bertagnolli geplanten Variantemaßnahmen zum provisorischen und teilweise permanenten Baugrubenverbau und zur statischen Struktur des Tunnelquerschnittes dienten das vorliegenden Ausführungsprojekt vom 30.11.2018 von Ing. Rudi Bertagnolli und das Varianteprojekt vom 17.02.2020 des ausführenden Unternehmens cmb.

Dieser Bericht ist Teil des gesamten Projektes und muss gemeinsam mit den anderen Unterlagen gelesen werden.

1.1 Beschreibung der Arbeiten

Im vorliegenden Bericht wird die Variante folgender Arbeiten zum Bau der unterirdischen Zufahrt zum geplanten Kaufhaus entlang der Südtirolerstraße (vom Verdiplatz bis zum Waltherplatz; Bauphase 3 bis Bauphase 6) behandelt:

- Errichtung Mikropfähle und Großbohrpfähle zusammen mit einer provisorischen Trägerbohlwand ("Berliner Verbau") zum Bau eines Kanales, welcher zur Verlegung diverser Infrastrukturen notwendig ist (Bauphase 3a und 3a')
- Errichtung provisorischer Baugrubenverbau mit Mikropfähle und Litzenanker bzw. Nagelwand mit Spritzbeton und anschließender Errichtung des Tunnels in traditioneller Bauweise (Bauphase 3 – 4; Schnitt 2-2; 3a-3a; 3c-3c)
- Errichtung Großbohrpfähle als permanente Unterstützung der Tunneldecke und Errichtung des Tunnels in Top-Down Bauweise (Bauphase 6-7; Schnitt 6-6)
- Errichtung vernagelte Spritzbetonwand zwischen den aussteifenden Scheiben aus überschnittenen Großbohrpfählen im Bereich des Nachbargebäudes (Bauphase 6; Schnitt 6-6)

Abbildung 1: Grundriss

2 Normen

Die gesamte Planung und Ausarbeitung erfolgte unter Berücksichtigung des D.M. 17/01/2018 "Norme Tecniche per le Costruzioni", im Folgenden als NTC 2018 bezeichnet.

Für die beschriebenen Leistungen, welche nicht ausdrücklich im NTC 2018 geregelt sind, wurden gleichwertige Normen und technische Dokumente (NTC 2018, § 1), vor allem der Eurocode mit dem nationalen Anhang, verwendet.

Alle Nachweise wurden auf Grundlage der folgenden nationalen Normen ausgearbeitet:

- Decreto del Ministero delle Infrastrutture 17 Gennaio 2018 Approvazione delle nuove Norme Tecniche per le Costruzioni (NTC 2018)
- Circolare del Ministero delle Infrastrutture 2 Febbraio 2009, n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 Gennaio 2008 (Circ. NTC 2008)
- D.M. 16 febbraio 2007: Classificazione di resistenza al fuoco di prodotti ed elementi costruttivi di opere da costruzione;

Alle Nachweise wurden auf Grundlage der folgenden europäischen Normen ausgearbeitet:

- UNI EN 1990:2006 Eurocode 0 Grundlagen der Tragwerksplanung;
- UNI EN 1991-1-1:2004 Eurocode 1 Einwirkungen auf Tragwerke Teil 1-1: Wichten, Eigengewicht und Nutzlasten im Hochbau;
- UNI EN 1992-1:2005 Eurocode 2 Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken

Teil 1-1: Grundlagen und Anwendungsregeln für den Hochbau;

- UNI EN 1993-1-1:2005 Eurocode 3 Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau;
- UNI EN 1994-1-1:2005 Eurocode 4 Bemessung und Konstruktion von Verbundtragwerken aus Stahl und Beton

Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau;

- UNI EN 1997-1:2005 Eurocode 7 Entwurf,Berechnung und Bemessung in der Geotechnik Teil 1: Allgemeine Regeln;
- UNI EN 1998-1:2005 Eurocode 8 Auslegung von Bauwerken gegen Erdbeben Teil 1: Grundlagen, Erdbebeneinwirkungen und Regeln für Hochbauten;

Alle Nachweise wurden auf Grundlage der folgenden technischen Dokumente ausgearbeitet:

- AICAP 1993: Ancoraggi nei terreni e nelle rocce Raccomandazioni
- AICAP 2012: Ancoraggi nei terreni e nelle rocce Raccomandazioni

3 Allgemeine Berechnungsannahmen

3.1 Allgemeines

Die tragenden Bauteile wurden auf Basis der Nachweise im Grenzzustand der Tragfähigkeit mit den verschiedenen Lastfallkombinationen und auf Basis der Nachweise im Grenzzustand der Gebrauchstauglichkeit bemessen.

Die Struktur wurde des Weiteren auch auf die vorübergehende Bemessungssituation in den verschiedenen Bauphasen ausgelegt (NTC 2018, § 2.2.3).

Die Nachweise der tragenden Struktur sind im Kapitel 10 angegeben.

3.2 Sicherheitskonzept

Für die geotechnischen und strukturellen Nachweise wurde das semi-probabilistische Sicherheitskonzept, welches auf der Verwendung von Teilsicherheitsbeiwerten beruht, verwendet. Dabei wird der Widerstand des Bauteils den Einwirkungen gegenübergestellt.

Grenzzustände können entweder im Baugrund oder im Bauwerk oder als gemeinsames Versagen von Bauwerk und Baugrund eintreten.

Soweit zutreffend, muss nachgewiesen werden, dass folgende Grenzzustände nicht überschritten werden:

- Verlust der Lagesicherheit des als starrer Körper angesehenen Bauwerks oder des Baugrunds, wobei die Festigkeiten der Baustoffe und des Baugrunds für den Widerstand nicht entscheidend sind. (EQU)
- inneres Versagen oder sehr große Verformung des Bauwerks oder seiner Bauteile, einschließlich der Fundamente, Pfähle, Kellerwände usw., wobei die Festigkeit der Baustoffe für den Widerstand entscheidend ist. (STR)
- Versagen oder sehr große Verformung des Baugrunds, wobei die Festigkeit der Locker- und Festgesteine für den Widerstand entscheidend ist. (GEO)
- Verlust der Lagesicherheit des Bauwerks oder Baugrunds infolge Aufschwimmens (Auftrieb) oder anderer vertikaler Einwirkungen. (UPL)
- Hydraulischer Grundbruch, innere Erosion und Piping im Boden, verursacht durch Strömungsgradienten. (HYD)

Bei der Betrachtung eines durch Bruch oder sehr große Verformung gekennzeichneten Grenzzustands in einem Tragelement, in einem Querschnitt oder im Baugrund (STR und GEO) muss nachgewiesen werden, dass $R_d \ge E_d$ ist.

R_d ist der Bemessungswert der zugehörigen Tragfähigkeit, errechnet aus den Bemessungswerten der Materialien, Bodenparametern und den geometrischen Größen des Bauteils

 E_d ist der Bemessungswert der Auswirkung der Einwirkungen, errechnet aus $F_{dj} = F_{kj} \cdot \gamma_{Fj}$ oder direkt aus $E_{dj} = E_{kj} \cdot \gamma_{Ej}$. Dieser ist in den maßgebenden Schnitten durch das Bauwerk und den Baugrund sowie in den Berührungsflächen zwischen Bauwerk und Baugrund zu ermitteln. Die Teilsicherheitsbeiwerte, $\gamma_{Mi} e \gamma_{Fj}$, bezogen auf das i-te Material bzw. der j-ten Last, berücksichtigen die Unsicherheit in den verschiedenen Größen , in den geometrischen Abmessungen und im Berechnungsmodell.

Für Strukturbauteile werden zudem die Nachweise für den Grenzzustand der Tragfähigkeit (GZT) und den Grenzzustand der Gebrauchstauglichkeit (GZG) geführt.

3.2.1 Nachweis im Grenzzustand der Tragfähigkeit

Die Nachweise im Grenzzustand der Tragfähigkeit unterteilen sich in:

EQU: Verlust der Lagesicherheit des Bauwerks oder des Baugrunds oder eines seiner Teile betrachtet als starrer Körper

STR: Versagen oder übermäßige Verformungen des gesamten Tragwerks oder von Tragwerksteilen, wobei die Tragfähigkeit von Bauteilen und deren Festigkeit maßgebend wird (Stabilität)

GEO: Versagen oder übermäßige Verformungen des Baugrundes

Gleichungen zur Berechnung der Biegebewehrung

Terminologie für die Dimensionierung und die Verlegung der Bewehrung in Decken

Die benutzte Konvention zur Benennung der verschiedenen Parameter in der Bemessungssoftware Scia Engineer aufgelistet.

Projekt: Platte	mxD+, myD+, mcD+, mxD-, myD-, mcD-
Projekt: Wand	nxD, nyD, ncD
Projekt: Allgemein (Schale)	mxD+, myD+, mcD+, mxD-, myD-, mcD-, nxD, nyD, ncD

Bemessungsmomente in Platten, die mit positiven Elementkoordinaten zur Oberfläche in Verbindung stehen und mit einem Pluszeichen (+) markiert sind. Bemessungsmomente in Platten, die mit negativen Elementkoordinaten zur Oberfläche streben und mit einem Minuszeichen (–) markiert sind. Bemessungskräfte in einer Wand in der Mittenebene.

Zugehörige Wirkfläche der Bemessungsmomente in Schalen wird direkt durch das Momentenvorzeichen bestimmt.

Abbildung 3: Definition Verlegung Bewehrung

Neigung der Betondruckstreben

Die Neigung der Betondruckstreben ist in den Berechnungen als variabel angesetzt. Der Winkel θ zwischen der Achse der Decke und der Druckstrebe liegt zwischen folgenden Werten: $1 \le \cot \theta \le 2,5$.

Anmerkung zur Handhabung von Spitzenwerten und Singularitäten im Berechnungsmodell

Die Spitzenwerte in den Diagrammen der Bemessungsschnittlinien, dem Verlauf der Bewehrung und der Spannungszustände, hervorgerufen durch die Singularitäten im Berechnungsmodell, sind durch mittlere Werte in einem angemessenen Abstand ersetz worden.

Nicht explizit nachgewiesene Bauteile

Alle in der Berechnung nicht explizit nachgewiesenen Bauteile werden konstruktiv, nach den allgemeinen "anerkannten Regeln der Technik" (siehe auch EN 45020) ausgeführt.

3.2.2 Nachweis im Grenzzustand der Gebrauchstauglichkeit

Die Druckspannungen im Beton müssen begrenzt werde, um Längsrisse, Mikrorisse oder starkes Kriechen zu vermeiden, wo diese zu nicht akzeptablen Auswirkungen auf die Funktion des Tragwerks führen könnten.

Es kann zu Längsrissen kommen, wenn die Spannungen unter der charakteristischen Einwirkungskombination einen kritischen Wert übersteigen. In Bauteilen, die den Bedingungen der Expositionsklassen XD, XF und XS ausgesetzt sind und in denen keine anderen Maßnahmen getroffen werden, wie z. B. eine Erhöhung der Betondeckung in der Druckzone oder eine Umschnürung der Druckzone durch Querbewehrung, sollten die Betondruckspannungen auf den Wert k₁·f_{ck} begrenzt werden.

Der empfohlene Wert ist $k_1 = 0,60$.

Beträgt die Spannung im Beton unter quasi-ständiger Belastung weniger als k₂·f_{ck}, darf von linearem Kriechen ausgegangen werden. Übersteigt die Spannung im Beton k₂·f_{ck}, sollte nichtlineares Kriechen berücksichtigt werden.

Der empfohlene Wert ist $k_2 = 0,45$.

Wenn die Zugspannung in der Bewehrung unter der charakteristischen Einwirkungskombination k₃·f_{yk} nicht übersteigt, darf davon ausgegangen werden, dass nicht-akzeptable Rissbildung oder Verformungen vermieden werden können. Wird die Spannung durch eine indirekte Einwirkung bedingt, sollte die Zugspannung k₄·f_{yk} nicht überschreiten. Der Mittelwert der Spannungen in Spanngliedern sollte k₅·f_{pk} nicht überschreiten.

Die empfohlenen Werte sind $k_3 = 0,80$

k₄ = 1,00 k₅ = 0,70.

Verformungen und Verschiebungen

Die maximalen Verformungen (Durchbiegung) für Bauteile aus Stahlbeton sind die folgenden:

- δmax < Leff / 250
- δincrementale < Leff / 300

Langzeitverformungen

Kriechen und Schwinden verursachen lastunabhängige Verformungen. Die Kriechverformung εν ist nach linearer Theorie proportional zur elastischen Verformung εel gemäß der Endkriechzahl φ.

 $\epsilon = \epsilon_{el} + \epsilon_v = \epsilon \cdot (1 + \phi) = \sigma_C / E_C \cdot (1 + \phi)$

Für kriecherzeugende Beanspruchungen darf die Gesamtverformung einschließlich Kriechens mittels des wirksamen Elastizitätsmoduls für Beton $E_{c,eff} = E_{cm} / (1 + \phi \cdot (\infty, t_0))$ (UNI EN 1992-1-1, §7.4.3), unter Berücksichtigung des Verhältnisses der wirksamen E-Module $\alpha_e = E_s / E_{c,eff}$ berechnet werden. E und I sollten sowohl für den ungerissenen, wie auch für den gerissenen Zustand ermittelt werden.

Die Kriechzahl und die Schwindverformungen werden anhand der Formeln aus dem Anhang B der UNI EN 1992-1-1 errechnet.

Annahmen für Berechnungen Langzeitverformungen wenn nicht explizit definiert:

- Luftfeuchte RH = 50 %
- Erstbelastung t₀ = 28 d

3.2.3 Stabilitätsnachweise (GEO)

In diesem Abschnitt werden die Stabilitätsnachweise (GEO) geführt. Es werden eine Reihe von Grenzzuständen untersucht, so z.B.:

- Verlust der Gesamtstandsicherheit
- Grundbruch, versagen durch Durchstanzen, Stauchen
- Gleiten
- gemeinsames Versagen von Baugrund und Bauwerk
- Tragwerksversagen infolge von Fundamentbewegungen

Die Nachweise werden "Approccio 1: Combinazione 2 (A2+M2+R2)" geführt.

Das Finite Elementprogramm berücksichtigt alle möglichen Versagensmechanismen lt. NTC 2018.

Die Standsicherheit im Rahmen der numerischen Analyse, wird durch das Verhältnis des vorhandenen Systemwiderstandes zu dem Systemwiderstand der beim Bruch eintritt, definiert.

Die Sicherheit wird durch eine ϕ – c – Reduktion ermittelt. Bei diesem Berechnungsverfahren werden die Bodenkennwerte in kleinen Schritten so lange reduziert (und so in der Regel die Umhüllende des Grenzkriteriums verkleinert), bis das System versagt.

$$\sum M_{sf} = \frac{\tan \emptyset'_{input}}{\tan \emptyset'_{reduced}} = \frac{c'_{input}}{c'_{reduced}}$$

3.2.4 Nachweis der Verankerung Litzenanker/ Selbstbohranker

Der Widerstand der Verpressstrecke ist wie folgt berechnet worden:

$$R_d = \frac{\pi \cdot D \cdot \alpha \cdot L_a \cdot q_s}{\gamma_R}$$

con

D Durchmesser Bohrkopf

- α Vergrößerungsfaktor, abhängig von Bodentyp
- La Länge Verpresstrecke
- q_S Berechnungswert der Mantelreibung zwischen Verpressstrecke und Boden $q_S = q_k / \xi_i$ (qk charakteristischer Wert, ξ_i Korrelationskoeffizient Tab. 6.6.I/6.6.II NTC2018)
- γ_R Teilsicherheitsbeiwert

 $\gamma_R = 1,1$ temporäre Anker

 $\gamma_R = 1,2$ permanente Anker

Es wird eine Mantelreibung zwischen Verpressstrecke und Boden von $q_s = 320 \text{ kN/m}^2$ laut Bustamante e Doix verwendet

Der Vergrößerungsfaktor α wir d mit 1,35 gewählt.

3.3 Software

Die Untersuchungen und die Nachweise der tragenden Struktur sind mit Hilfe der folgenden Berechnungssoftware durchgeführt worden.

Die Zuverlässigkeit der verwendeten Software und die Glaubwürdigkeit der gewonnenen Ergebnisse wurden mit Hilfsberechnungen kontrolliert (NTC 2018, § 10.2).

Plaxis 2D	Finite-Elemente Analyse des Bodens			
	Version:	2019		
Plaxis 3D	Finite-Elemente Analyse des Bodens			
	Version:	2018		
Allplan 2018	Software für di	e Strukturzeichnunge	n in 2D und 3D	
Microsoft Excel 2010	Software für di	e Erstellung von autor	natisierten Berechnungsblätter	
Microsoft Word 2010	Software für di	e Erstellung von Texte	n	

Rechenalgorithmus Plaxis- Bodenmodell

Die Berechnung wurde mittels dem Finiten Elemente Programm Plaxis durchgeführt. Dabei werden die Abmessungen des Modellbereichs so gewählte, dass die Randbedingungen keinen Einfluss auf die Rechenergebnisse und Versagensmechanismen haben bzw. diese verfälschen.

Im Vergleich zu den klassischen Methoden wird das stark nichtlineare Verhalten des Bodens berücksichtigt. Für die nachfolgende Setzungsberechnung wurde das HS – Small Model gewählt.

Das HS-Small Modell ist eine Erweiterung des HS-Modells um den Effekt der erhöhten Steifigkeiten bzw. kleinen Dehnungen. Das Hardening-Soil Modell gehört zur Familie der Double Hardening Modelle und wurde von Schanz auf Grundlage von Vermeer entwickelt.

Durch die Einführung zweier weiterer Fließbedingungen neben der Grenzbedingung nach Mohr-Coulomb können sowohl irreversible Schubverzerrungen aus deviatorischer Erstbelastung als auch irreversible Volumendehnungen aus isotroper Erstbelastung beschrieben werden. Weitere Merkmale des Modells sind die spannungsabhängige Steifigkeit und die strikte Trennung zwischen Erst- und Ent-/Wiederbelastung.

Für die Tragsicherheitsnachweise wurde eine vereinfachte Modellierung der Jet – Säulen verwendet – sprich ihre Form wurde idealisiert (somit verringert sich die Rechenzeit).Für die Berechnung werden 15 – knotige Dreieckselemente verwendet mit 12 Gaußpunkten / Integrationspunkten.

4 Nutzungsdauer, Nutzungsklasse und Bezugszeitraum

Die Nutzungsdauer des Bauwerks, die Nutzungsklasse und der Bezugszeitraum sind wie folgt festgelegt:

Provisorische Bauwerke:

•	Nutzungsdauer	V _N = <2 Jahre	(NTC 2018, § 2.4.1)
•	Nutzungsklasse	Klasse II	(NTC 2018, § 2.4.2)
		C _U = 1,0	
•	Bezugszeitraum	$V_R = <2$ Jahre	(NTC 2018, § 2.4.3)

Laut NTC 2018, § 2.4.1, kann der Nachweis gegen Erdbeben entfallen, sofern sich die Dauer der Arbeiten auf 2 Jahren beschränkt.

Permanente Bauwerke:

•	Nutzungsdauer	V _N = 100 Jahre	(NTC 2018, § 2.4.1)
•	Nutzungsklasse	Klasse II	(NTC 2018, § 2.4.2)
		C _U = 1,0	
•	Bezugszeitraum	V _R = 100 Jahre	(NTC 2018, § 2.4.3)

5 Geotechnische Annahmen

5.1 Geotechnische Parameter Baugrund

Die geotechnischen Parameter wurden auf Grundlage des vorliegenden Ausführungsprojektes inklusive des geologischen und geotechnischen Berichtes wie folgt festgelegt:

operty	Unit	Value	Value	Value
Material set				
Identification number		2	3	4
Identification		Strato 3	Strato1	Strato2
Material model		HS small	HS small	HS small
Drainage type		Drained	Drained	Drained
Colour		RGB 242, 201, 105	RGB 161, 226, 232	RGB 134, 234, 162
Comments				
General properties				
Yunsat	kN/m³	18,50	18,00	21,00
Yest	kN/m³	19,00	19,00	22,00
- Jak				
tiffness				
E 50 ^{ref}	kN/m²	25,00E3	10,00E3	55,00E3
E _{oed} ^{ref}	kN/m²	25,00E3	10,00E3	48,26E3
E _{ur} ref	kN/m²	75,00E3	30,00E3	165,0E3
power (m)		0,5000	0,5000	0,5000
lternatives				
Use alternatives				
C _c		0,01380	0,03450	7,149E-3
C _s		4,140E-3	0,01035	1,882E-3
e _{init}		0,5000	0,5000	0,5000
trength				
c _{ref}	kN/m²	2,000	5,000	0,000
φ <mark>(p</mark> hi)	•	28,00	30,00	38,00
ψ (psi)	•	0,000	0,000	0,000
mall strain				
Y 0.7		0,1000E-3	0,1000E-3	0,1000E-3
G , ref	kN/m²	60,00E3	40,00E3	170,0E3

Abbildung 4: Geotechnische Parameter

Für die Böschungen wurden, wie im geologischen Bericht, eine kurzeitige Kohäsion von 5 kN/m² angesetzt werden.

6 Einwirkungen auf Tragwerke

6.1 Klassifizierung der Einwirkungen nach Änderungen ihrer Intensität über die Zeit

6.1.1 Ständige Einwirkungen (G)

Die ständigen Einwirkungen wirken während der gesamten Nutzungsdauer des Bauwerkes und die Änderung ihrer Intensität über die Zeit ist so gering und langsam, dass die Einwirkungen mit hinlänglicher Näherung als konstant über die Zeit angesehen werden können:

 Eigengewicht aller tragenden Bauteile; resultierende Wasserdruckkraft: G1
Die Eigengewichte der tragenden Bauteile wurden anhand des Querschnittes und des spezifischen Gewichtes, wie im NTC 2018, § 3.1.3.1, Tab. 3.1.I angegeben, bestimmt.

Stahl	78,50 kN/m³
Stahlbeton	25,00 kN/m ³
nicht bewehrter Beton	24,00 kN/m ³
Leichtbeton für Estrich	16,00 kN/m ³

- Eigengewicht infolge Auflasten: G₂
- Die ständigen Auflasten errechnen sich aus der Dichte der Materialien und ihrer Schichtung.
- Verschiebungen und Verformungen
- Schwinden und Kriechen
- Ungleichmäßige Setzungen

6.1.2 Veränderliche Einwirkungen (Q)

Die veränderlichen Einwirkungen, welche auf die Struktur oder auf die Bauteile wirken, können sich über die Zeit ändern:

- Lange Einwirkungsdauer: Einwirkung mit einer signifikanten Größe, welche auch nicht kontinuierlich sein kann, während einer Zeit, die im Verhältnis zu der Nutzungsdauer nicht vernachlässigbar ist.
- Kurze Einwirkungsdauer : Einwirkung, welche nur während einer kurzen Zeit im Verhältnis zu der Nutzungsdauer wirken.

Die Werte der Nutzlasten für die verschiedenen Gebäudekategorien sind im NTC 2018, § 3.1.4, Tabelle 3.1.II festgeschrieben.

6.1.3 Einwirkungen infolge Erdbeben (E)

Diese Einwirkungen entstehen im Erdbebenfall.

In der folgenden Abbildung sind die verschiedenen Gefahrenzonen auf dem nationalen Gebiet dargestellt.

Für die Gemeinde Bozen, und insbesondere für die Zone des Eingriffes, ist die maximale Bodenbeschleunigung, außer wenn es zu Verstärkung auf Grund der Stratigraphie kommt, dargestellt.

Abbildung 5: Zone sismiche 2015 (zonesismiche.mi.ingv.it)

Die Bemessungs-Bodenbeschleunigung der Baustelle ist:

SLV: a_g/g = 0,614.

6.2 Lastfallkombinationen

Die Lastfallkombinationen werden wie folgt definiert:

Ständige und vorübergehende Bemessungssituation (Grundkombination) - GZT $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \Psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \Psi_{03} \cdot Q_{k3} + ...$ Charakteristische Kombination – GZG $G_1 + G_2 + P + Q_{k1} + \Psi_{02} \cdot Q_{k2} + \Psi_{03} \cdot Q_{k3} + ...$ Häufige Kombination - GZG $G_1 + G_2 + P + \Psi_{11} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + ...$ Quasi-ständige Kombination – GZG $G_1 + G_2 + P + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + ...$ Erdbeben – GZT e GZG $E + G_1 + G_2 + P + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + ...$ Außergewöhnliche Bemessungssituation – GZT $G_1 + G_2 + P + A_d + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + ...$

6.3 Teilsicherheitsbeiwerte Einwirkungen

Die Teilsicherheitsbeiwerte für Einwirkungen γ_{Gi} und γ_{Qi} sind laut NTC 2018, § 2.6.1. wie folgt definiert:

		Teilsicherheitsbeiwerte	EQU	A1	A2	UPL	HYD
		γ _F		STR	GEO		
Ständige	günstig		0,90	1,00	1,00	0,90	0,90
Einwirkungen	0 0	М			-		
(zufolge	ungünstig	Y G1	1,10	1,30	1,00	1,10	1,30
Eigengewicht)	0 0						
Ständige	günstig		0,00	0,00	0,00	0,00	0,00
Einwirkungen		γ G2					
(zufolge Auflast)	ungunstig		1,50	1,50	1,30	1,50	1,50
Veränderliche	günstig		0,00	0,00	0,00	0,00	0,00
Einwirkungen	ungünstig	γαί	1,50	1,50	1,30	1,50	1,50

Falls die ständigen Einwirkungen (zufolge Auflasten) genauestens definiert sind, werden die Teilsicherheitsbeiwerte der ständigen Einwirkungen (zufolge Eigengewicht) verwendet.

6.3.1 Teilsicherheitsbeiwerte für die Eigenschaften der Baustoffe

Die Teilsicherheitsbeiwerte für die Eigenschaften der Baustoffe γ_i sind laut NTC 2018, § 4.3.3. wie folgt definiert:

Beton

Der Teilsicherheitsbeiwert für die Baustoffe im Betonbau, γ_c , sind laut NTC 2018, § 4.4.6 wie folgt definiert:

-	$\gamma_{\rm C}$ (Beton) =	1	.,5
			/ -

Stahl

Die Teilsicherheitsbeiwerte für die Baustoffe im Stahlbau, γ_{Mi} , sind laut NTC, §4.2.4.1.1 und 4.4.6 wie folgt definiert:

-	γ _A (Profilstahl) =	1,05
-	γs (Betonstahl) =	1,15

-	γv (Verbindungen) =	1,25
-	γ _{M0} (Querschnittnachweise) =	1,05
-	γ _{M1} (Stabilitätsnachweise) =	1,05
-	γ _{M1} (Stabilitätsnachweise, Brücke) =	1,10
-	γ_{M2} (Bruchversagen infolge Zugbeanspruchung) =	1,25

Für die Nachweise im Grenzzustand der Gebrauchstauglichkeit wird folg. Teilsicherheitsbeiwert verwendet: $\gamma_M = 1$.

Für die Nachweise der außergewöhnl. Bemessungssituation wird folg. Teilsicherheitsbeiwert verwendet: $\gamma_M = 1$.

6.4 Kombinationsbeiwerte

Die Kombinationsbeiwerte sind laut NTC 2018, § 2.5.2. Tab. 2.5.I wie folgt definiert:

Kategorie	Einwirkung	Ψ_{0j}	Ψ_{1j}	Ψ_{2j}
А	Wohngebäude	0,7	0,5	0,3
В	Bürogebäude	0,7	0,5	0,3
С	Versammlungsbereiche	0,7	0,7	0,6
D	Verkaufsflächen	0,7	0,7	0,6
E	Lagerflächen	1,0	0,9	0,8
F	Fahrzeugverkehr im Hochbau, Fahrzeuggewicht ≤ 30 kN	0,7	0,7	0,6
G	Fahrzeugverkehr im Hochbau, 30 kN < Fahrzeuggewicht ≤ 160 kN	0,7	0,5	0,3
Н	Dächer	0,0	0,0	0,0
	Windlasten im Hochbau	0,6	0,2	0,0
	Schneelasten im Hochbau (Höhe ≤1000 m m.ü.M)	0,5	0,2	0,0
	Schneelasten im Hochbau (Höhe > 1000 m m.ü.M)	0,7	0,5	0,2
	Temperaturanwendungen im Hochbau	0,6	0,5	0,0

6.5 Teilsicherheitsbeiwerte für Bodenkenngrößen

Bodenkenngröße	Symbol	(M1)	(M2)
	γ_{M}		
Wirksamer Scherwinkel	$\gamma_{\Phi'}$	1,0	1,25
Wirksame Kohäsion	γ _c ´	1,0	1,25
Scherfestigkeit im undränierten Zustand	γ_{cu}	1,0	1,4
Wichte	Ŷγ	1,0	1,0

Abbildung 6: Tabelle 6.2.II – Teilsicherheitsbeiwerte für Bodenkenngrößen

Streuungsfaktoren für Pfahlgründungen 6.6

Die Streuungsfaktoren der charakteristischen Pfahlwiderstände sind laut NTC 2018, § 6.4.3.1.1. wie folgt definiert:

Anzahl der Versuchsprofile	1	2	3	4	≥5
ξ_1	1,40	1,30	1,20	1,10	1,00
Ĕ	1 40	1 20	1 05	1 00	1 00

Abbildung 7:

Tabelle 6.4.III– Streuungsfaktoren zur Ableitung charakteristischer Werte aus statischen Pfahlprobebelastungen

Anzahl der Versuchsprofile	1	2	3	4	5	7	≥10
ξ_3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Abbildung 8:

Tabelle 6.4.IV – Streuungsfaktoren zur Ableitung charakteristischer Werte aus Ergebnissen von Baugrunduntersuchungen

Anzahl der Versuchsprofile	≥2	≥5	≥10	≥15	≥20
ξ_5	1,60	1,50	1,45	1,42	1,40
ξ ₆	1,50	1,35	1,30	1,25	1,25

Abbildung 9: Tabelle 6.4.V – Streuungsfaktoren zur Ableitung charakteristischer Werte aus Schlagversuchen

6.7 Teilsicherheitsbeiwerte für die Widerstände vorgespannter Anker

Widerstand	Symbol	Werte
Kurzzeitanker	γ _{Ra,t}	1,1
Daueranker	γ _{Ra,p}	1,2

Abbildung 10: Tabelle 6.6.I – Teilsicherheitsbeiwerte für die Widerstände vorgespannter Anker

6.8 Teilsicherheitsbeiwert für Böschungen und Nachweis der Gesamtstandsicherheit

Widerstand	Symbol	R2
Erdwiderstand	γ_R	1,1

Abbildung 11: Tabelle 6.8.I – Teilsicherheitsbeiwerte für Böschungen und Nachweise der Gesamtstandsicherheit

7 Lastannahmen

7.1 Ständige Einwirkungen (zufolge Eigengewicht)

Das Eigengewicht der tragenden Struktur wird anhand der Wichte der Materialien bestimmt (siehe NTC 2018, § 3.1.2).

Stahlbeton (e/o Spannbeton): $\gamma = 25,00 \text{ kN/m}^3$

Profilstahl: γ = 78,50 kN/m³

Erddruck: Der Erddruck ist eine ständige Einwirkung, verhält sich aber je nach Verformungen des Stützbauwerkes unterschiedlich. Somit wird für das spezifische Gewicht des Bodens γ auf das geotechnische Gutachten im Kapitel der geotechnischen Annahmen verwiesen.

7.2 Ständige Einwirkungen (zufolge Auflast)

Auf die Tragstrukturen wirkt das Eigengewicht des aufgeschütteten Materials, welches mit einer Wichte von ca. 18 KN/m³ angenommen wurde. Die effektive Flächenlast ergibt sich durch die jeweils vorhandene Aufschüttungshöhe

7.3 Nutzlasten Schneelast:	1,30 kN/m²
Verkehrlast:	
Gehsteig	5,00 kN/m²
Baustellenverkehr	20,00 kN/m²
Verteilte Verkehrlast	20,00 kN/m²

(für das Definitivprojekt wurde auf die Aufstellung der Wanderlast in 3 Fahrstreifen verzichtet und dafür die verteilte Flächenlast erhöht, welche mit einer Vergleichsrechnung überprüft wurde)

7.4 Lastannahmen bestehende Gebäude

Für die Fundamentlasten der Bestandsgebaüde wird auf die statische Berechnung des Ausführungsprojektes von Ing. Rudi Bertagnolli verwiesen.

8 Baustoffe

Die wichtigsten Eigenschaften der Baustoffe, welche für die Erstellung der tragenden Struktur verwendet worden sind, sind in den folgenden Kapiteln angeführt.

8.1 Beton

Betonfestigkeitsklasse		C25/30	C30/37	C35/45	
charakteristische	f _{ck}	25	30	35	N/mm²
Zylinderdruckfestigkeit des Betons	~				
charakteristische	t _{ck,cube,}	30	37	45	N/mm²
Zylinderdruckfestigkeit des Betons	R _{ck}				
Bemessungswert der einaxialen	fcd	14	17	20	N/mm²
Druckfestigkeit des Betons				-	,
Mittelwert der	fcm	33	38	43	N/mm ²
Zylinderdruckfestigkeit des Betons	•cm		50		
Mittelwert der zentrischen	f	26	2.0	2.2	N/mm ²
Zugfestigkeit des Betons	Ictm	2,0	2,9	3,2	11/11/11
charakteristischer Wert der	t	1 0	2.0	~	N/mm ²
zentrischen Betonzugfestigkeit	¹ ctk,0,05	1,0	2,0	2,2	IN/11111
charakteristischer Wert der	t	2.2	2.0	4.2	NI/mm²
zentrischen Betonzugfestigkeit	l _{ctk} ,0,95	3,3	3,8	4,2	N/mm ⁻
mittlerer Elastizitätsmodul als	-	21000		24000	NI /
Sekante	Ecm	31000	33000	34000	N/mm-
Dehnung des Betons unter der		~ 4			~
Maximalspannung fc	ε _{c1}	2,1	2,2	2,25	‱
rechnerische Bruchdehnung des	_				0/
Betons	ε _{cu1}	3,5	3,5	3,5	% 0
	ε _{c2}	2,0	2,0	2,0	‰
	ε _{cu2}	3,5	3,5	3,5	‰
	n	2,0	2,0	2,0	
	E _{c3}	1,75	1,75	1,75	‰
	ε _{cu3}	3,5	3,5	3,5	‰

8.1.1 Expositionsklassen

Die Expositionsklassen sind laut UNI 1992-1-1, § 4.2 wie folgt definiert:

Klasse	Beschreibung der Umgebung
Betonang	riff durch Frost mit und ohne Taumittel
XF3	Hohe Wassersättigung ohne Taumittel
XF4	Hohe Wassersättigung mit Taumittel oder Meerwasser

8.2 Betonstahl

Das Verhalten des Betonstahles B450C wird durch die nachfolgenden Eigenschaften festgelegt:

charakteristischer Wert der Streckgrenze	f _{yk}	≥ 450 N/mm²
Bemessungswert der Streckgrenze	f _{yd}	391 N/mm²
charakteristischer Wert der Zugfestigkeit	f _{tk}	≥ 540 N/mm²
Elastizitätsmodul	E	210000 N/mm²

8.3 Baustahl

Der Baustahl muss schweißbar und für die Anwendung genehmigt sein. Das Verhalten des Baustahles wird durch die nachfolgenden Eigenschaften festgelegt:

Querdehnzahl	ν	0,15
Wärmeausdehnungskoeffizient	a	12 x 10 ⁻⁶ per °C
Warmeausuermungskoemzient	u	(für Temperaturen bis 100°C)
Elastizitätsmodul	E	210000 N/mm²

Normen und	Dicke des Element						
Stahlgüte	t ≤ 40 mm		40 mm < t ≤ 80 mm				
	f _{yk} [N/mm²]	f _{tk} [N/mm²]	f _{yk} [N/mm²]	f _{tk} [N/mm²]			
UNI EN 10025-2							
S 235	235	360	215	360			
S 275	275	430	255	410			
S 355	355	510	335	470			
S 450	440	550	420	550			

Abbildung 12: Warmgewalzter Baustahl für offene Querschnitte (NTC 2018, Tabelle 4.2.I)

8.4 Vorgespannte Anker

Die Anker werden als provvisorische Anker mit 3 oder 4 Litzen ausgeführt.

Spannstahl für vorgespannten Anker

charakteristischer Wert der 0,1% Dehngrenze des Spannstahls	f _{p0,1k}	1670 N/mm²
charakteristischer Wert der Zugfestigkeit des Spannstahls	\mathbf{f}_{ptk}	1860 N/mm²
Elastizitätsmodul des Spannstahls	E	196.000 N/mm²

Eigenschaften der Litzen

Beschreibung	Litzen Typ	Durchmesser	Quer- schnitt	f _{ptk}	f _{p(1)k}	Masse	Zugkraft bei 1% Dehngrenze	Bruch- kraft(P _{tk})	P _{t0,1k}	Rilassa dopo 1 0,7 – 0	Rilassamento dopo 1000h 0,7 – 0,8 f _{pt}	
		[mm]	[mm²]	[N/mm²]	[N/mm²]	[g/m]	[kN]	[kN]	[kN]	[%]	[%]	
T15	super	15,7	150	1860	1670	1093	251	279	248	2,5	4,5	
$E_{cm} = 196.000N_{cm}$	/mm² ±10.	000N										

8.5 Selbstbohranker

Es werden folgende Selbstbohranker verwendet:

Ankertyp	Einheit	R32	T76
Außendurchmesser	[mm]	32	76
Höchstzugkraft	[kN]	280	1500
Streckgrenzlast	[kN]	240	1240
Gewicht	[kg/lfm]	3,4	18,0

Abbildung 13:	Materialspezifikationen	Selbstbohranker
/ WO WING WIND TO !	materialopezimationen	00100000111 dillice1